Advanced Search
Article Contents

Seasonal Differences of Model Predictability and the Impact of SST in the Pacific


doi: 10.1007/BF02930873

  • Both seasonal potential predictability and the impact of SST in the Pacific on the forecast skill over China are investigated by using a 9-level global atmospheric general circulation model developed at the Institute of Atmospheric Physics under the Chinese Academy of Sciences (IAP9L-AGCM). For each year during 1970 to 1999, the ensemble consists of seven integrations started from consecutive observational daily atmospheric fields and forced by observational monthly SST. For boreal winter, spring and summer,the variance ratios of the SST-forced variability to the total variability and the differences in the spatial correlation coefficients of seasonal mean fields in special years versus normal years are computed respectively. It follows that there are slightly inter-seasonal differences in the model potential predictability in the Tropics. At northern middle and high latitudes, prediction skill is generally low in spring and relatively high either in summer for surface air temperature and middle and upper tropospheric geopotential height or in winter for wind and precipitation. In general, prediction skill rises notably in western China, especially in northwestern China, when SST anomalies (SSTA) in the Nino-3 region are significant. Moreover,particular attention should be paid to the SSTA in the North Pacific (NP) if one aims to predict summer climate over the eastern part of China, i.e., northeastern China, North China and southeastern China.
  • [1] HU Dingzhu, TIAN Wenshou, XIE Fei, SHU Jianchuan, and Sandip DHOMSE, , 2014: Effects of Meridional Sea Surface Temperature Changes on Stratospheric Temperature and Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 888-900.  doi: 10.1007/s00376-013-3152-6
    [2] Se-Hwan YANG, LI Chaofan, and LU Riyu, 2014: Predictability of Winter Rainfall in South China as Demonstrated by the Coupled Models of ENSEMBLES, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 779-786.  doi: 10.1007/s00376-013-3172-2
    [3] BEI Naifang, Fuqing ZHANG, 2014: Mesoscale Predictability of Moist Baroclinic Waves: Variable and Scale-dependent Error Growth, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 995-1008.  doi: 10.1007/s00376-014-3191-7
    [4] Hailong LIU, Pingxiang Chu, Yao Meng, Mengrong DING, Pengfei LIN, Ruiqiang Ding, Pengfei Wang, Weipeng ZHENG, 2024: The Predictability Limit of Oceanic Mesoscale Eddy Tracks in the South China Sea, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3250-7
    [5] Fei ZHENG, Ji-Ping LIU, Xiang-Hui FANG, Mi-Rong SONG, Chao-Yuan YANG, Yuan YUAN, Ke-Xin LI, Ji WANG, Jiang ZHU, 2022: The Predictability of Ocean Environments that Contributed to the 2020/21 Extreme Cold Events in China: 2020/21 La Niña and 2020 Arctic Sea Ice Loss, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 658-672.  doi: 10.1007/s00376-021-1130-y
    [6] WANG Huijun, FAN Ke, SUN Jianqi, LI Shuanglin, LIN Zhaohui, ZHOU Guangqing, CHEN Lijuan, LANG Xianmei, LI Fang, ZHU Yali, CHEN Hong, ZHENG Fei, 2015: A Review of Seasonal Climate Prediction Research in China, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 149-168.  doi: 10.1007/s00376-014-0016-7
    [7] Yueliang CHEN, Changxiang YAN, Jiang ZHU, 2018: Assimilation of Sea Surface Temperature in a Global Hybrid Coordinate Ocean Model, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1291-1304.  doi: 10.1007/s00376-018-7284-6
    [8] SUN Jianqi, YUAN Wei, 2009: Contribution of the Sea Surface Temperature over the Mediterranean-Black Sea to the Decadal Shift of the Summer North Atlantic Oscillation, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 717-726.  doi: 10.1007/s00376-009-8210-8
    [9] Jiangyu MAO, Ming WANG, 2018: The 30-60-day Intraseasonal Variability of Sea Surface Temperature in the South China Sea during May-September, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 550-566.  doi: 10.1007/s00376-017-7127-x
    [10] Xue Feng, 2001: Interannual to Interdecadal Variation of East Asian Summer Monsoon and its Association with the Global Atmospheric Circulation and Sea Surface Temperature, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 567-575.  doi: 10.1007/s00376-001-0045-x
    [11] Li Wei, Yu Rucong, Zhang Xuehong, 2001: Impacts of Sea Surface Temperature in the Tropical Pacific on Interannual Variability of Madden-Julian Oscillation in Precipitation, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 429-444.  doi: 10.1007/BF02919322
    [12] Shuai WANG, Ralf TOUMI, 2018: Reduced Sensitivity of Tropical Cyclone Intensity and Size to Sea Surface Temperature in a Radiative-Convective Equilibrium Environment, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 981-993.  doi: 10.1007/s00376-018-7277-5
    [13] Yan XIA, Yongyun HU, Jiankai ZHANG, Fei XIE, Wenshou TIAN, 2021: Record Arctic Ozone Loss in Spring 2020 is Likely Caused by North Pacific Warm Sea Surface Temperature Anomalies, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1723-1736.  doi: 10.1007/s00376-021-0359-9
    [14] Wenjing SHI, Ziniu XIAO, Jianjun XUE, 2016: Teleconnected Influence of the Boreal Winter Antarctic Oscillation on the Somali Jet: Bridging Role of Sea Surface Temperature in Southern High and Middle Latitudes, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 47-57.  doi: 10.1007/s00376-015-5094-7
    [15] Yunyun LIU, Zeng-Zhen HU, Renguang WU, Xing YUAN, 2022: Causes and Predictability of the 2021 Spring Southwestern China Severe Drought, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1766-1776.  doi: 10.1007/s00376-022-1428-4
    [16] Zhiyong MENG, Eugene E. CLOTHIAUX, 2022: Contributions of Fuqing ZHANG to Predictability, Data Assimilation, and Dynamics of High Impact Weather: A Tribute, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 676-683.  doi: 10.1007/s00376-021-1362-x
    [17] Chaofan LI, Riyu LU, Philip E. BETT, Adam A. SCAIFE, Nicola MARTIN, 2018: Skillful Seasonal Forecasts of Summer Surface Air Temperature in Western China by Global Seasonal Forecast System Version 5, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 955-964.  doi: 10.1007/s00376-018-7291-7
    [18] Zhiyi ZHOU, Juan LI, Haishan CHEN, Zhiwei ZHU, 2023: Seasonal Prediction of Extreme High-Temperature Days in Southwestern China Based on the Physical Precursors, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1212-1224.  doi: 10.1007/s00376-022-2075-5
    [19] Mu Mu, Duan Wansuo, Wang Jiacheng, 2002: The Predictability Problems in Numerical Weather and Climate Prediction, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 191-204.  doi: 10.1007/s00376-002-0016-x
    [20] Wansuo DUAN, Lichao YANG, Mu MU, Bin WANG, Xueshun SHEN, Zhiyong MENG, Ruiqiang DING, 2023: Recent Advances in China on the Predictability of Weather and Climate, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1521-1547.  doi: 10.1007/s00376-023-2334-0

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 2005
Manuscript revised: 10 January 2005
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Seasonal Differences of Model Predictability and the Impact of SST in the Pacific

  • 1. Nansen-Zhu International Research Center, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing 100029,Nansen-Zhu International Research Center, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing 100029

Abstract: Both seasonal potential predictability and the impact of SST in the Pacific on the forecast skill over China are investigated by using a 9-level global atmospheric general circulation model developed at the Institute of Atmospheric Physics under the Chinese Academy of Sciences (IAP9L-AGCM). For each year during 1970 to 1999, the ensemble consists of seven integrations started from consecutive observational daily atmospheric fields and forced by observational monthly SST. For boreal winter, spring and summer,the variance ratios of the SST-forced variability to the total variability and the differences in the spatial correlation coefficients of seasonal mean fields in special years versus normal years are computed respectively. It follows that there are slightly inter-seasonal differences in the model potential predictability in the Tropics. At northern middle and high latitudes, prediction skill is generally low in spring and relatively high either in summer for surface air temperature and middle and upper tropospheric geopotential height or in winter for wind and precipitation. In general, prediction skill rises notably in western China, especially in northwestern China, when SST anomalies (SSTA) in the Nino-3 region are significant. Moreover,particular attention should be paid to the SSTA in the North Pacific (NP) if one aims to predict summer climate over the eastern part of China, i.e., northeastern China, North China and southeastern China.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return