Advanced Search
Article Contents

Optimal Parameter and Uncertainty Estimation of a Land Surface Model: Sensitivity to Parameter Ranges and Model Complexities


doi: 10.1007/BF02930878

  • Most previous land-surface model calibration studies have defined global ranges for their parameters to search for optimal parameter sets. Little work has been conducted to study the impacts of realistic versus global ranges as well as model complexities on the calibration and uncertainty estimates. The primary purpose of this paper is to investigate these impacts by employing Bayesian Stochastic Inversion (BSI)to the Chameleon Surface Model (CHASM). The CHASM was designed to explore the general aspects of land-surface energy balance representation within a common modeling framework that can be run from a simple energy balance formulation to a complex mosaic type structure. The BSI is an uncertainty estimation technique based on Bayes theorem, importance sampling, and very fast simulated annealing.The model forcing data and surface flux data were collected at seven sites representing a wide range of climate and vegetation conditions. For each site, four experiments were performed with simple and complex CHASM formulations as well as realistic and global parameter ranges. Twenty eight experiments were conducted and 50 000 parameter sets were used for each run. The results show that the use of global and realistic ranges gives similar simulations for both modes for most sites, but the global ranges tend to produce some unreasonable optimal parameter values. Comparison of simple and complex modes shows that the simple mode has more parameters with unreasonable optimal values. Use of parameter ranges and model complexities have significant impacts on frequency distribution of parameters, marginal posterior probability density functions, and estimates of uncertainty of simulated sensible and latent heat fluxes.Comparison between model complexity and parameter ranges shows that the former has more significant impacts on parameter and uncertainty estimations.
  • [1] Zhizhen XU, Jing CHEN, Zheng JIN, Hongqi LI, Fajing CHEN, 2020: Representing Model Uncertainty by Multi-Stochastic Physics Approaches in the GRAPES Ensemble, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 328-346.  doi: 10.1007/s00376-020-9171-1
    [2] Chang LIU, Shaoqing ZHANG, Shan LI, Zhengyu LIU, 2017: Impact of the Time Scale of Model Sensitivity Response on Coupled Model Parameter Estimation, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1346-1357.  doi: 10.1007/s00376-017-6272-6
    [3] Yang LU, Xiaochun WANG, Jihai DONG, 2021: Melt Pond Scheme Parameter Estimation Using an Adjoint Model, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1525-1536.  doi: 10.1007/s00376-021-0305-x
    [4] WANG Bo, and HUO Zhenhua, 2013: Extended application of the conditional nonlinear optimal parameter perturbation method in the Common Land Model, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1213-1223.  doi: 10.1007/s00376-012-2025-8
    [5] Joon Jin SONG, Soohyun KWON, GyuWon LEE, 2015: Incorporation of Parameter Uncertainty into Spatial Interpolation Using Bayesian Trans-Gaussian Kriging, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 413-423.  doi: 10.1007/s00376-014-4040-4
    [6] Zhizhen XU, Jing CHEN, Mu MU, Guokun DAI, Yanan MA, 2022: A Nonlinear Representation of Model Uncertainty in a Convective-Scale Ensemble Prediction System, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1432-1450.  doi: 10.1007/s00376-022-1341-x
    [7] Chuan GAO, Rong-Hua ZHANG, Xinrong WU, Jichang SUN, 2018: Idealized Experiments for Optimizing Model Parameters Using a 4D-Variational Method in an Intermediate Coupled Model of ENSO, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 410-422.  doi: 10.1007/s00376-017-7109-z
    [8] Runhua YANG, Jing GUO, Lars Peter RIISH?JGAARD, 2006: Application of an Error Statistics Estimation Method to the PSAS Forecast Error Covariance Model, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 33-44.  doi: 10.1007/s00376-006-0004-7
    [9] Lu WANG, Xueshun SHEN, Juanjuan LIU, Bin WANG, 2020: Model Uncertainty Representation for a Convection-Allowing Ensemble Prediction System Based on CNOP-P, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 817-831.  doi: 10.1007/s00376-020-9262-z
    [10] XU Hui, DUAN Wansuo, 2008: What Kind of Initial Errors Cause the Severest Prediction Uncertainty of El Nino in Zebiak-Cane Model, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 577-584.  doi: 10.1007/s00376-008-0577-4
    [11] XUE Haile, SHEN Xueshun, CHOU Jifan, 2015: An Online Model Correction Method Based on an Inverse Problem: Part I——Model Error Estimation by Iteration, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1329-1340.  doi: 10.1007/s00376-015-4261-1
    [12] Xiaogu ZHENG, 2009: An Adaptive Estimation of Forecast Error Covariance Parameters for Kalman Filtering Data Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 154-160.  doi: 10.1007/s00376-009-0154-5
    [13] Bin MU, Juhui REN, Shijin YUAN, Rong-Hua ZHANG, Lei CHEN, Chuan GAO, 2019: The Optimal Precursors for ENSO Events Depicted Using the Gradient-definition-based Method in an Intermediate Coupled Model, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1381-1392.  doi: 10.1007/s00376-019-9040-y
    [14] Ling-Jiang TAO, Rong-Hua ZHANG, Chuan GAO, 2017: Initial Error-induced Optimal Perturbations in ENSO Predictions, as Derived from an Intermediate Coupled Model, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 791-803.  doi: 10.1007/s00376-017-6266-4
    [15] Xia LIU, Qiang WANG, Mu MU, 2018: Optimal Initial Error Growth in the Prediction of the Kuroshio Large Meander Based on a High-resolution Regional Ocean Model, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1362-1371.  doi: 10.1007/s00376-018-8003-z
    [16] Ni Yunqi, Zou Li, Wu Aiming, 1996: Response Process of Ocean to Atmospheric Forcing and Optimal Response Frequency in the CZ Ocean Model, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 43-58.  doi: 10.1007/BF02657027
    [17] Feifan ZHOU, Wansuo DUAN, He ZHANG, Munehiko YAMAGUCHI, 2018: Possible Sources of Forecast Errors Generated by the Global/Regional Assimilation and Prediction System for Landfalling Tropical Cyclones. Part II: Model Uncertainty, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1277-1290.  doi: 10.1007/s00376-018-7095-9
    [18] LI Hongqi, GUO Weidong, SUN Guodong, ZHANG Yaocun, FU Congbin, 2011: A New Approach for Parameter Optimization in Land Surface Model, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1056-1066.  doi: 10.1007/s00376-010-0050-z
    [19] Banglin ZHANG, Vijay TALLAPRAGADA, Fuzhong WENG, Jason SIPPEL, Zaizhong MA, 2016: Estimation and Correction of Model Bias in the NASA/GMAO GEOS5 Data Assimilation System: Sequential Implementation, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 659-672.  doi: 10.1007/ s00376-015-5155-y
    [20] LIANG Hong, ZHANG Renhe, LIU Jingmiao, SUN Zhian, CHENG Xinghong, 2012: Estimation of Hourly Solar Radiation at the Surface under Cloudless Conditions on the Tibetan Plateau Using a Simple Radiation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 675-689.  doi: 10.1007/s00376-012-1157-1

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 2005
Manuscript revised: 10 January 2005
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Optimal Parameter and Uncertainty Estimation of a Land Surface Model: Sensitivity to Parameter Ranges and Model Complexities

  • 1. Institute for Geophysics, The John A. and Katherine G. Jackson School of Geosciences,University of Texas at Austin, 4412 Spicewood Spring Road, Austin, TX 78759-8500, USA,Department of Geological Sciences, The John A. and Katherine G. Jackson School of Geosciences, University of Texas at Austin, USA,Institute for Geophysics, The John A. and Katherine G. Jackson School of Geosciences,University of Texas at Austin, 4412 Spicewood Spring Road, Austin, TX 78759-8500, USA,Institute for Geophysics, The John A. and Katherine G. Jackson School of Geosciences,University of Texas at Austin, 4412 Spicewood Spring Road, Austin, TX 78759-8500, USA

Abstract: Most previous land-surface model calibration studies have defined global ranges for their parameters to search for optimal parameter sets. Little work has been conducted to study the impacts of realistic versus global ranges as well as model complexities on the calibration and uncertainty estimates. The primary purpose of this paper is to investigate these impacts by employing Bayesian Stochastic Inversion (BSI)to the Chameleon Surface Model (CHASM). The CHASM was designed to explore the general aspects of land-surface energy balance representation within a common modeling framework that can be run from a simple energy balance formulation to a complex mosaic type structure. The BSI is an uncertainty estimation technique based on Bayes theorem, importance sampling, and very fast simulated annealing.The model forcing data and surface flux data were collected at seven sites representing a wide range of climate and vegetation conditions. For each site, four experiments were performed with simple and complex CHASM formulations as well as realistic and global parameter ranges. Twenty eight experiments were conducted and 50 000 parameter sets were used for each run. The results show that the use of global and realistic ranges gives similar simulations for both modes for most sites, but the global ranges tend to produce some unreasonable optimal parameter values. Comparison of simple and complex modes shows that the simple mode has more parameters with unreasonable optimal values. Use of parameter ranges and model complexities have significant impacts on frequency distribution of parameters, marginal posterior probability density functions, and estimates of uncertainty of simulated sensible and latent heat fluxes.Comparison between model complexity and parameter ranges shows that the former has more significant impacts on parameter and uncertainty estimations.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return