Advanced Search
Article Contents

A Global Ocean Biogeochemistry General Circulation Model and its Simulations


doi: 10.1007/s00376-012-2162-0

  • An ocean biogeochemistry model was developed and incorporated into a global ocean general circulation model (LICOM) to form an ocean biogeochemistry general circulation model (OBGCM). The model was used to study the natural carbon cycle and the uptake and storage of anthropogenic CO2 in the ocean. A global export production of 12.5 Pg C yr-1 was obtained. The model estimated that in the pre-industrial era the global equatorial region within 15o of the equator released 0.97 Pg C yr-1 to the atmosphere, which was balanced by the gain of CO2 in other regions. The post-industrial air-sea CO2 flux indicated the oceanic uptake of CO2 emitted by human activities. An increase of 20-50 mol kg-1 for surface dissolved inorganic carbon (DIC) concentrations in the 1990s relative to pre-industrial times was obtained in the simulation, which was consistent with data-based estimates. The model generated a total anthropogenic carbon inventory of 105 Pg C as of 1994, which was within the range of estimates by other researchers. Various transports of both natural and anthropogenic DIC as well as labile dissolved organic carbon (LDOC) were estimated from the simulation. It was realized that the Southern Ocean and the high-latitude region of the North Pacific are important export regions where accumulative air-sea CO2 fluxes are larger than the DIC inventory, whereas the subtropical regions are acceptance regions. The interhemispheric transport of total natural carbon (DIC+LDOC) was found to be northward (0.11 Pg C yr-1), which was just balanced by the gain of carbon from the atmosphere in the Southern Hemisphere.
  • [1] Zhangcai QIN, Xi DENG, Bronson GRISCOM, Yao HUANG, Tingting LI, Pete SMITH, Wenping YUAN, Wen ZHANG, 2021: Natural Climate Solutions for China: The Last Mile to Carbon Neutrality, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 889-895.  doi: 10.1007/s00376-021-1031-0
    [2] Xu Yongfu, Wang Mingxing, 1998: A Two-Dimensional Zonally Averaged Ocean Carbon Cycle Model, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 370-379.  doi: 10.1007/s00376-998-0007-7
    [3] You YI, Zhaonan CAI, Yi LIU, Shuangxi FANG, Yuli ZHANG, Dongxu YANG, Yong WANG, Miao LIANG, Maohua WANG, 2020: Direct Observations of Atmospheric Transport and Stratosphere-Troposphere Exchange from High-Precision Carbon Dioxide and Carbon Monoxide Profile Measurements, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 608-616.  doi: 10.1007/s00376-020-9227-2
    [4] Li Yinpeng, Ji Jinjun, 2001: Model Estimates of Global Carbon Flux between Vegetation and the Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 807-818.
    [5] XU Yongfu, LI Yangchun, 2009: Estimates of Anthropogenic CO2 Uptake in a Global Ocean Model, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 265-274.  doi: 10.1007/s00376-009-0265-z
    [6] XU Yongfu, HUANG Yao, LI Yangchun, 2012: Summary of Recent Climate Change Studies on the Carbon and Nitrogen Cycles in the Terrestrial Ecosystem and Ocean in China, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1027-1047.  doi: 10.1007/s00376-012-1206-9
    [7] MAO Jiafu, WANG Bin, DAI Yongjiu, P. J. HANSON, M. R. LOMAS, 2007: Improvements of a Dynamic Global Vegetation Model and Simulations of Carbon and Water at an Upland-Oak Forest, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 311-322.  doi: 10.1007/s00376-007-0311-7
    [8] GAO Lijie, ZHANG Meigen, HAN Zhiwei, 2009: Model Analysis of Seasonal Variations in Tropospheric Ozone and Carbon Monoxide over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 312-318.  doi: 10.1007/s00376-009-0312-9
    [9] Alexey V. ELISEEV, Igor I. MOKHOV, 2011: Uncertainty of Climate Response to Natural and Anthropogenic Forcings Due to Different Land Use Scenarios, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1215-1232.  doi: 10.1007/s00376-010-0054-8
    [10] WANG Jun, BAO Qing, Ning ZENG, LIU Yimin, WU Guoxiong, JI Duoying, 2013: Earth System Model FGOALS-s2: Coupling a Dynamic Global Vegetation and Terrestrial Carbon Model with the Physical Climate System Model, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1549-1559.  doi: 10.1007/s00376-013-2169-1
    [11] WANG Gengchen, BAI Jianhui, KONG Qinxin, Alexander EMILENKO, 2005: Black Carbon Particles in the Urban Atmosphere in Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 640-646.  doi: 10.1007/BF02918707
    [12] Ning ZENG, Kejun JIANG, Pengfei HAN, Zeke HAUSFATHER, Junji CAO, Daniel KIRK-DAVIDOFF, Shaukat ALI, Sheng ZHOU, 2022: The Chinese Carbon-Neutral Goal: Challenges and Prospects, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1229-1238.  doi: 10.1007/s00376-021-1313-6
    [13] WANG Zhili, ZHANG Hua, SHEN Xueshun, 2011: Radiative Forcing and Climate Response Due to Black Carbon in Snow and Ice, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1336-1344.  doi: 10.1007/s00376-011-0117-5
    [14] Surachai SATHITKUNARAT, Prungchan WONGWISES, Rudklao PAN-ARAM, ZHANG Meigen, 2006: Carbon Monoxide Emission and Concentration Models for Chiang Mai Urban Area, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 901-908.  doi: 10.1007/s00376-006-0901-9
    [15] Moon-Soo PARK, Seung Jin JOO, Soon-Ung PARK, 2014: Carbon Dioxide Concentration and Flux in an Urban Residential Area in Seoul, Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1101-1112.  doi: 10.1007/s00376-013-3168-y
    [16] Xi WANG, Zheng GUO, Yipeng HUANG, Hongjie FAN, Wanbiao LI, 2017: A Cloud Detection Scheme for the Chinese Carbon Dioxide Observation Satellite (TANSAT), ADVANCES IN ATMOSPHERIC SCIENCES, 34, 16-25.  doi: 10.1007/s00376-016-6033-y
    [17] Shutao CHEN, Jianwen ZOU, Zhenghua HU, Yanyu LU, 2019: Climate and Vegetation Drivers of Terrestrial Carbon Fluxes: A Global Data Synthesis, ADVANCES IN ATMOSPHERIC SCIENCES, , 679-696.  doi: 10.1007/s00376-019-8194-y
    [18] Dongxu YANG, Yi LIU, Zhaonan CAI, Xi CHEN, Lu YAO, Daren LU, 2018: First Global Carbon Dioxide Maps Produced from TanSat Measurements, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 621-623.  doi: 10.1007/s00376-018-7312-6
    [19] Lujun XU, Huizhi LIU, Qun DU, Yang LIU, Jihua SUN, Anlun XU, Xiaoni MENG, 2021: Characteristics of Lake Breezes and Their Impacts on Energy and Carbon Fluxes in Mountainous Areas, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 603-614.  doi: 10.1007/s00376-020-0298-x
    [20] Dongxu YANG, Yi LIU, Liang FENG, Jing WANG, Lu YAO, Zhaonan CAI, Sihong ZHU, Naimeng LU, Daren LYU, 2021: The First Global Carbon Dioxide Flux Map Derived from TanSat Measurements, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1433-1443.  doi: 10.1007/s00376-021-1179-7

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 16 July 2012
Manuscript revised: 04 November 2012
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

A Global Ocean Biogeochemistry General Circulation Model and its Simulations

    Corresponding author: XU Yongfu; 
  • 1. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029
  • 2. National Climate Center, Beijing 100081

Abstract: An ocean biogeochemistry model was developed and incorporated into a global ocean general circulation model (LICOM) to form an ocean biogeochemistry general circulation model (OBGCM). The model was used to study the natural carbon cycle and the uptake and storage of anthropogenic CO2 in the ocean. A global export production of 12.5 Pg C yr-1 was obtained. The model estimated that in the pre-industrial era the global equatorial region within 15o of the equator released 0.97 Pg C yr-1 to the atmosphere, which was balanced by the gain of CO2 in other regions. The post-industrial air-sea CO2 flux indicated the oceanic uptake of CO2 emitted by human activities. An increase of 20-50 mol kg-1 for surface dissolved inorganic carbon (DIC) concentrations in the 1990s relative to pre-industrial times was obtained in the simulation, which was consistent with data-based estimates. The model generated a total anthropogenic carbon inventory of 105 Pg C as of 1994, which was within the range of estimates by other researchers. Various transports of both natural and anthropogenic DIC as well as labile dissolved organic carbon (LDOC) were estimated from the simulation. It was realized that the Southern Ocean and the high-latitude region of the North Pacific are important export regions where accumulative air-sea CO2 fluxes are larger than the DIC inventory, whereas the subtropical regions are acceptance regions. The interhemispheric transport of total natural carbon (DIC+LDOC) was found to be northward (0.11 Pg C yr-1), which was just balanced by the gain of carbon from the atmosphere in the Southern Hemisphere.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return