Advanced Search

Volume 2 Issue 4

Oct.  1985

Article Contents

AN EXACT CALCULATION OF INFRARED COOLING RATE DUE TO WATER VAPOR


doi: 10.1007/BF02678751

  • The longwave (0-2380 cm-1) cooling rate due to water vapor in the troposphere and the stratosphere has been calculated by a new infrared transmission model in this paper. An exact scheme is used for treating the integration over wavenumber and the inhomogeneous path in the atmosphere. It is shown that the atmospheric window region (730-1200 cm-1) (mainly water vapor continuum) plays an important role in the total cooling near the surface, about 72% of the total cooling lying in this region at the height of 1 km; the CG approximation used for an inhomogeneous path is fairly applicable for calculating the cooling rate due to water vapor, with a maximum error of 0.16 K/day throughout the troposhere and the stratosphere; on the other hand, the error due to the diffusivity factor of 1.66 appears to be slightly larger near the surface. In this study, the influences on the calculation of above infrared cooling rate, of the temperature-dependence of the absorption coefficients of water vapor, the upper level cutoff and the integration step for altitude, and the substitution of the quasi-grey approximation for the exact integration over wavenumber, are also examined.
  • [1] Qian Yongfu, 1987: RECURRENCE METHOD FOR CALCULATION OF ATMOS-PHERIC COOLING RATE DUE TO INFRARED RADIATION, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 403-413.  doi: 10.1007/BF02656741
    [2] Shi Guangyu, Qu Yanni, 1986: EFFECTS OF RADIATION MODELS ON THE CALCULATION OF ATMOSPHERIC INFRARED COOLING RATES, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 227-237.  doi: 10.1007/BF02682556
    [3] Xun Zhu, 1989: A Parameterization of Cooling Rate Calculation under the Non-LTE Condition: Multi-Level Model, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 403-413.  doi: 10.1007/BF02659075
    [4] LIU Weiyi, QIU Jinhuan, 2012: A Parameterized yet Accurate Model of Ozone and Water Vapor Transmittance in the Solar-to-near-infrared Spectrum, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 599-610.  doi: 10.1007/s00376-011-1076-6
    [5] Zhao Gaoxiang, 1998: Analysis of the Ability of Infrared Water Vapor Channel for Moisture Remote Sensing in the Lower Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 107-112.  doi: 10.1007/s00376-998-0022-8
    [6] Ling WANG, Xiuqing HU, Na XU, Lin CHEN, 2021: Water Vapor Retrievals from Near-infrared Channels of the Advanced Medium Resolution Spectral Imager Instrument onboard the Fengyun-3D Satellite, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1351-1366.  doi: 10.1007/s00376-020-0174-8
    [7] YANG Lu, WANG Zhenhui, CHU Yanli, ZHAO Hang, TANG Min, 2014: Water Vapor Motion Signal Extraction from FY-2E Longwave Infrared Window Images for Cloud-free Regions: The Temporal Difference Technique, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1386-1394.  doi: 10.1007/s00376-014-3165-9
    [8] LI Guoqing, ZONG Haifeng, ZHANG Qingyun, 2011: 27.3-day and Average 13.6-day Periodic Oscillations in the Earth's Rotation Rate and Atmospheric Pressure Fields Due to Celestial Gravitation Forcing, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 45-58.  doi: 10.1007/s00376-010-0011-6
    [9] SUN Li, SHEN Baizhu, SUI Bo, 2010: A Study on Water Vapor Transport and Budget of Heavy Rain in Northeast China, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1399-1414.  doi: 10.1007/s00376-010-9087-2
    [10] TIAN Wenshou, Martyn P. CHIPPERFIELD, LU Daren, 2009: Impact of Increasing Stratospheric Water Vapor on Ozone Depletion and Temperature Change, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 423-437.  doi: 10.1007/s00376-009-0423-3
    [11] BI Yun, CHEN Yuejuan, ZHOU Renjun, YI Mingjian, DENG Shumei, 2011: Simulation of the Effect of Water-vapor Increase on Temperature in the Stratosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 832-842.  doi: 10.1007/s00376-010-0047-7
    [12] SUN Bo, ZHU Yali, WANG Huijun, 2011: The Recent Interdecadal and Interannual Variation of Water Vapor Transport over Eastern China, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1039-1048.  doi: 10.1007/s00376-010-0093-1
    [13] XU Xiangde, MIAO Qiuju, WANG Jizhi, ZHANG Xuejin, 2003: The Water Vapor Transport Model at the Regional Boundary during the Meiyu Period, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 333-342.  doi: 10.1007/BF02690791
    [14] Yi Lan, 1995: Characteristics of the Mean Water Vapor Transport over Monsoon Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 195-206.  doi: 10.1007/BF02656832
    [15] Licheng FENG, Rong-Hua ZHANG, Bo YU, Xue HAN, 2020: Roles of Wind Stress and Subsurface Cold Water in the Second-Year Cooling of the 2017/18 La Niña Event, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 847-860.  doi: 10.1007/s00376-020-0028-4
    [16] Eun-Han KWON, Jinlong LI, B. J. SOHN, Elisabeth WEISZ, 2012: Use of Total Precipitable Water Classification of A Priori Error and Quality Control in Atmospheric Temperature and Water Vapor Sounding Retrieval, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 263-273.  doi: 10.1007/s00376-011-1119-z
    [17] WANG Xin, Lü Daren, 2005: Retrieval of Water Vapor Profiles with Radio Occultation Measurements Using an Artificial Neural Network, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 759-764.  doi: 10.1007/BF02918719
    [18] BI Yanmeng, MAO Jietai, LI Chengcai, 2006: Preliminary Results of 4-D Water Vapor Tomography in the Troposphere Using GPS, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 551-560.  doi: 10.1007/s00376-006-0551-y
    [19] C.-L. SHIE, W.-K. TAO, J. SIMPSON, 2006: A Note on the Relationship Between Temperature and Water Vapor over Oceans, Including Sea Surface Temperature Effects, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 141-148.  doi: 10.1007/s00376-006-0014-5
    [20] PAN Yang, YU Rucong, LI Jian, XU Youping, 2008: A Case Study on the Role of Water Vapor from Southwest China in Downstream Heavy Rainfall, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 563-576.  doi: 10.1007/s00376-008-0563-x

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 October 1985
Manuscript revised: 10 October 1985
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

AN EXACT CALCULATION OF INFRARED COOLING RATE DUE TO WATER VAPOR

  • 1. InstituteofAtmosphericPhysics,AcademiaSinica,Beijing,InstituteofAtmosphericPhysics,AcademiaSinica,Beijing

Abstract: The longwave (0-2380 cm-1) cooling rate due to water vapor in the troposphere and the stratosphere has been calculated by a new infrared transmission model in this paper. An exact scheme is used for treating the integration over wavenumber and the inhomogeneous path in the atmosphere. It is shown that the atmospheric window region (730-1200 cm-1) (mainly water vapor continuum) plays an important role in the total cooling near the surface, about 72% of the total cooling lying in this region at the height of 1 km; the CG approximation used for an inhomogeneous path is fairly applicable for calculating the cooling rate due to water vapor, with a maximum error of 0.16 K/day throughout the troposhere and the stratosphere; on the other hand, the error due to the diffusivity factor of 1.66 appears to be slightly larger near the surface. In this study, the influences on the calculation of above infrared cooling rate, of the temperature-dependence of the absorption coefficients of water vapor, the upper level cutoff and the integration step for altitude, and the substitution of the quasi-grey approximation for the exact integration over wavenumber, are also examined.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return