Advanced Search
Article Contents

The Variational Assimilation Experiment of GPS Bending Angle


doi: 10.1007/BF02690806

  • More and more new types of observational data provide many new opportunities for improving numericalweather forecasts. Among these, the GPS (Global Positioning System) bending angle is undoubtedly veryimportant. There are many advantages of the GPS bending angle, such as high resolution, availability inall weather conditions, and global data coverage. Thus it is very valuable to assimilate GPS bending angledata into numerical weather models. This paper introduces how to obtain and assimilate the GPS bendingangle. There are two methods of assimilation: the indirect method and direct method, and they are bothintroduced in this paper. During the minimizing process of variational assimilation, calculation efficiencyis very important and the optimal step size greatly influences the algorithm efficiency. Based on thecharacteristics of the minimizing algorithm, we obtain an adaptive method for calculating the optimizingstep suitable for all kinds of minimization algorithms through mathematical deduction. Finally, a numericalvariational assimilation experiment is performed using the GPS bending angle data of 11 October 1995.The numerical results indicate the validity of the variational assimilation method and the adaptive methodintroduced here.
  • [1] Wang Yunfeng, Wu Rongsheng, Wang Yuan, Pan Yinong, 2000: A Simple Method of Calculating the Optimal Step Size in 4DVAR Technique, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 433-444.  doi: 10.1007/s00376-000-0034-5
    [2] ZHANG Xin, LIU Yuewei, WANG Bin, JI Zhongzhen, 2004: Parallel Computing of a Variational Data Assimilation Model for GPS/MET Observation Using the Ray-Tracing Method, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 220-226.  doi: 10.1007/BF02915708
    [3] ZHANG Meng, NI Yunqi, ZHANG Fuqing, 2007: Variational Assimilation of GPS Precipitable Water Vapor and Hourly Rainfall Observations for a Meso- Scale Heavy Precipitation Event During the 2002 Mei-Yu Season, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 509-526.  doi: 10.1007/s00376-007-0509-8
    [4] Shen YAN, Jie XIANG, Huadong DU, 2019: Determining Atmospheric Boundary Layer Height with the Numerical Differentiation Method Using Bending Angle Data from COSMIC, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 303-312.  doi: 10.1007/s00376-018-7308-2
    [5] KUANG Zheng, WANG Bin, YANG Hualin, 2003: A Rapid Optimization Algorithm for GPS Data Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 437-441.  doi: 10.1007/BF02690801
    [6] Da-Lin ZHANG, Xiaoxue WANG, 2003: Dependence of Hurricane Intensity and Structures on Vertical Resolution and Time-Step Size, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 711-725.  doi: 10.1007/BF02915397
    [7] Zhu Keyun, 2001: On the 4D Variational Data Assimilation with Constraint Conditions, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1131-1145.  doi: 10.1007/s00376-001-0028-y
    [8] Fuqing ZHANG, Meng ZHANG, James A. HANSEN, 2009: Coupling Ensemble Kalman Filter with Four-dimensional Variational Data Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1-8.  doi: 10.1007/s00376-009-0001-8
    [9] WANG Bin, LIU Juanjuan, WANG Shudong, CHENG Wei, LIU Juan, LIU Chengsi, Qingnong XIAO, Ying-Hwa KUO, 2010: An Economical Approach to Four-dimensional Variational Data Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 715-727.  doi: 10.1007/s00376-009-9122-3
    [10] WANG Yunfeng, WANG Bin, HAN Yueqi, ZHU Min, HOU Zhiming, ZHOU Yi, LIU Yudi, KOU Zheng, 2004: Variational Data Assimilation Experiments of Mei-Yu Front Rainstorms in China, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 587-596.  doi: 10.1007/BF02915726
    [11] Yaodeng CHEN, Ruizhi ZHANG, Deming MENG, Jinzhong MIN, Lina ZHANG, 2016: Variational Assimilation of Satellite Cloud Water/Ice Path and Microphysics Scheme Sensitivity to the Assimilation of a Rainfall Case, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1158-1170.  doi: 10.1007/s00376-016-6004-3
    [12] LIU Ye, YAN Changxiang, 2010: Application of a Recursive Filter to a Three-Dimensional Variational Ocean Data Assimilation System, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 293-302.  doi: 10.1007/s00376-009-8112-9
    [13] ZENG Zhihua, DUAN Yihong, LIANG Xudong, MA Leiming, Johnny Chung-leung CHAN, 2005: The Effect of Three-Dimensional Variational Data Assimilation of QuikSCAT Data on the Numerical Simulation of Typhoon Track and Intensity, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 534-544.  doi: 10.1007/BF02918486
    [14] ZHANG Xiaoyan, WANG Bin, JI Zhongzhen, Qingnong XIAO, ZHANG Xin, 2003: Initialization and Simulation of a Typhoon Using 4-Dimensional Variational Data Assimilation-Research on Typhoon Herb(1996), ADVANCES IN ATMOSPHERIC SCIENCES, 20, 612-622.  doi: 10.1007/BF02915504
    [15] Chuan GAO, Xinrong WU, Rong-Hua ZHANG, 2016: Testing a Four-Dimensional Variational Data Assimilation Method Using an Improved Intermediate Coupled Model for ENSO Analysis and Prediction, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 875-888.  doi: 10.1007/s00376-016-5249-1
    [16] ZHANG Lin, NI Yunqi, 2005: Four-Dimensional Variational Data Assimilation Experiments for a Heavy Rain Case During the 2002 IOP in China, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 300-312.  doi: 10.1007/BF02918519
    [17] LIU Juan, WANG Bin, LIU Hailong, YU Yongqiang, 2008: A New Global Four-Dimensional Variational Ocean Data Assimilation System and Its Application, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 680-691.  doi: 10.1007/s00376-008-0680-6
    [18] LIU Juanjuan, WANG Bin, WANG Shudong, 2010: The Structure of Background-error Covariance in a Four-dimensional Variational Data Assimilation System: Single-point Experiment, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1303-1310.  doi: 10.1007/s00376-010-9067-6
    [19] Xin LI, Mingjian ZENG, Yuan WANG, Wenlan WANG, Haiying WU, Haixia MEI, 2016: Evaluation of Two Momentum Control Variable Schemes and Their Impact on the Variational Assimilation of Radar Wind Data: Case Study of a Squall Line, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1143-1157.  doi: 10.1007/s00376-016-5255-3
    [20] Chaoqun MA, Tijian WANG, Zengliang ZANG, Zhijin LI, 2018: Comparisons of Three-Dimensional Variational Data Assimilation and Model Output Statistics in Improving Atmospheric Chemistry Forecasts, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 813-825.  doi: 10.1007/s00376-017-7179-y

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 May 2003
Manuscript revised: 10 May 2003
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

The Variational Assimilation Experiment of GPS Bending Angle

  • 1. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;Institute of Meteorology, PLA University of Science and Technology, Nanjing 211101,LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: More and more new types of observational data provide many new opportunities for improving numericalweather forecasts. Among these, the GPS (Global Positioning System) bending angle is undoubtedly veryimportant. There are many advantages of the GPS bending angle, such as high resolution, availability inall weather conditions, and global data coverage. Thus it is very valuable to assimilate GPS bending angledata into numerical weather models. This paper introduces how to obtain and assimilate the GPS bendingangle. There are two methods of assimilation: the indirect method and direct method, and they are bothintroduced in this paper. During the minimizing process of variational assimilation, calculation efficiencyis very important and the optimal step size greatly influences the algorithm efficiency. Based on thecharacteristics of the minimizing algorithm, we obtain an adaptive method for calculating the optimizingstep suitable for all kinds of minimization algorithms through mathematical deduction. Finally, a numericalvariational assimilation experiment is performed using the GPS bending angle data of 11 October 1995.The numerical results indicate the validity of the variational assimilation method and the adaptive methodintroduced here.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return