Advanced Search

Volume 8 Issue 4

Oct.  1991

Article Contents

Diagnosis of Kinetic Energy Balance of a Decaying Onland Typhoon


doi: 10.1007/BF02919270

  • Diagnostic analysis of the balance of kinetic energy (KE) is made for a decaying onland typoon, its external tor-rential rain area and environment. Results show that, besides low-level frictional dissipation as an energy sink, upper-level horizontal export of KE is another important one for the typhoon. In its decaying KE grows in the exter-nal torrential rain area, and the KB production term Gk represents the chief energy source for the torrential rain. The growth of Gk is attributed to the development of the heavy rain and to the heating effect of released latent heat, and the external torrential rain owes its evolution to the exported KE from the strong windbelt in the east of the ty-phoon and the conversion of synoptic KE into mesoscale perturbation KE. The development of the torrential rain re-sults in the KE feedback to its environment. The KG transfer from toe typhoon to the external torrential rain area and then to the environmental region as a mechanism constitutes one of the causes for the rapid disintegration of the tempest.
  • [1] Xin QUAN, Xiaofan LI, 2023: Kinetic Energy Budgets during the Rapid Intensification of Typhoon Rammasun (2014), ADVANCES IN ATMOSPHERIC SCIENCES, 40, 78-94.  doi: 10.1007/s00376-022-2060-z
    [2] Xiuping YAO, Ruoying LI, Xiaohong BAO, Qiaohua LIU, 2024: Diagnosis of the Kinetic Energy of the “21·7” Extreme Torrential Rainfall Event in Henan Province, China, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 73-83.  doi: 10.1007/s00376-023-3025-6
    [3] ZUO Qunjie, GAO Shouting, and LÜ Daren, 2014: Eddy Kinetic Energy Study of the Snowstorm over Southern China in January 2008, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 972-984.  doi: 10.1007/s00376-013-3122-z
    [4] Minwei Qian, N. Loglisci, C. Cassardo, A. Longhetto, C. Giraud, 2001: Energy and Water Balance at Soil-Air Interface in a Sahelian Region, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 897-909.
    [5] WANG Linlin, GAO Zhiqiu, MIAO Shiguang, GUO Xiaofeng, SUN Ting, Maofeng LIU, Dan LI, 2015: Contrasting Characteristics of the Surface Energy Balance between the Urban and Rural Areas of Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 505-514.  doi: 10.1007/s00376-014-3222-4
    [6] SUN Shufen, ZHANG Xia, 2004: Effect of the Lower Boundary Position of the Fourier Equation on the Soil Energy Balance, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 868-878.  doi: 10.1007/BF02915589
    [7] WANG Runyuan, ZHANG Qiang, 2011: An Assessment of Storage Terms in the Surface Energy Balance of a Subalpine Meadow in Northwest China, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 691-698.  doi: 10.1007/s00376-010-9152-x
    [8] Qiu Yongyan, 1993: On the Seasonal Transition and the Interannual Variability in Global Kinetic Energy at 500 hPa, Accompanied with Anomalies of Energy during the 1982 / 83 ENSO, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 248-256.  doi: 10.1007/BF02919148
    [9] ZUO Qunjie, GAO Shouting, LU Daren, 2012: Kinetic and Available Potential Energy Transport during the Stratospheric Sudden Warming in January 2009, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1343-1359.  doi: 10.1007/s00376-012-1198-5
    [10] YUE Ping, ZHANG Qiang, WANG Runyuan, LI Yaohui, WANG Sheng, 2015: Turbulence Intensity and Turbulent Kinetic Energy Parameters over a Heterogeneous Terrain of Loess Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1291-1302.  doi: 10.1007/s00376-015-4258-9
    [11] D.R. Chakraborty, N.K. Agarwal, 1996: Role of Triad Kinetic Energy Interactions for Maintenance of Upper Tropospheric Low Frequency Waves during Summer Monsoon 1988, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 91-102.  doi: 10.1007/BF02657030
    [12] Wang Zuoshu, Zhang Ruojun, Peng Zhengyi, 1989: The Kinetic Energy Budget and Circulation Characteristics of the Tropical Storm Irma during AMEX Phase II, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 414-423.  doi: 10.1007/BF02659076
    [13] ZHU Zhilin, SUN Xiaomin, ZHANG Renhua, 2003: Statistical Analysis and Comparative Study of Energy Balance Components Estimated Using Micrometeorological Techniques during HUBEX/IOP 1998/99, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 285-291.  doi: 10.1007/s00376-003-0014-7
    [14] Lei WANG, Qing BAO, Wei-Chyung WANG, Yimin LIU, Guo-Xiong WU, Linjiong ZHOU, Jiandong LI, Hua GONG, Guokui NIAN, Jinxiao LI, Xiaocong WANG, Bian HE, 2019: LASG Global AGCM with a Two-moment Cloud Microphysics Scheme: Energy Balance and Cloud Radiative Forcing Characteristics, ADVANCES IN ATMOSPHERIC SCIENCES, , 697-710.  doi: 10.1007/s00376-019-8196-9
    [15] Chen Yingyi, Chao Jiping, 1984: A TWO-DIMENSIONAL ENERGY BALANCE CLIMATE MODEL INCLUDING RADIATION AND ICE CAPS-ALBEDO FEEDBACK, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 234-255.  doi: 10.1007/BF02678136
    [16] He Jinhai, T. Murakami, T. Nakazawa, 1987: ENERGY BALANCE IN 40-50 DAY PERIODIC OSCILLATION OVER THE ASIAN SUMMER MONSOON REGION DURING THE 1979 SUMMER, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 66-73.  doi: 10.1007/BF02656662
    [17] LI Yuefeng, 2007: Conversion of Kinetic Energy from Synoptic Scale Disturbance to Low-Frequency Fluctuation over the Yangtze River Valley in the Summers of 1997 and 1999, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 591-598.  doi: 10.1007/s00376-007-0591-y
    [18] Lu Yurong, Gao Guodong, 1984: A STUDY OF WATER BALANCE IN CHINA, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 165-187.  doi: 10.1007/BF02678129
    [19] FENG Juan*, CHEN Wen, 2014: Interference of the East Asian Winter Monsoon in the Impact of ENSO on the East Asian Summer Monsoon in Decaying Phases, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 344-354.  doi: 10.1007/s00376-013-3118-8
    [20] Lingkun RAN, Changsheng CHEN, 2016: Diagnosis of the Forcing of Inertial-gravity Waves in a Severe Convection System, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1271-1284.  doi: 10.1007/s00376-016-5292-y

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 October 1991
Manuscript revised: 10 October 1991
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Diagnosis of Kinetic Energy Balance of a Decaying Onland Typhoon

  • 1. Nanjing Institute of Meteorology, Nanjing 210044,Nanjing Institute of Meteorology, Nanjing 210044

Abstract: Diagnostic analysis of the balance of kinetic energy (KE) is made for a decaying onland typoon, its external tor-rential rain area and environment. Results show that, besides low-level frictional dissipation as an energy sink, upper-level horizontal export of KE is another important one for the typhoon. In its decaying KE grows in the exter-nal torrential rain area, and the KB production term Gk represents the chief energy source for the torrential rain. The growth of Gk is attributed to the development of the heavy rain and to the heating effect of released latent heat, and the external torrential rain owes its evolution to the exported KE from the strong windbelt in the east of the ty-phoon and the conversion of synoptic KE into mesoscale perturbation KE. The development of the torrential rain re-sults in the KE feedback to its environment. The KG transfer from toe typhoon to the external torrential rain area and then to the environmental region as a mechanism constitutes one of the causes for the rapid disintegration of the tempest.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return