Advanced Search
Article Contents

A Polarized Radiative Transfer Model Based on Successive Order of Scattering


doi: 10.1007/s00376-009-9049-8

  • Based on Successive Order of Scattering approach, a full Vector Radiative Transfer model (SOSVRT) for vertically inhomogeneous plane-parallel media has been developed. To overcome computational burden of convergence, a simple approximation technique by truncating scattering orders with a geometry serial is used to reduce computational time. Analytical Fourier decomposition of phase matrix with three symmetry relationships and two mutual inverse operators has been implemented to further improve the computation efficiency. To improve the accuracy, a post-processing procedure is implemented to accurately interpolate the Stokes vector at arbitrary angles. Comparisons with the benchmarks for an atmosphere of randomly orientated oblate spheroids show excellent agreement for each stokes parameter (within 0.1%). SOSVRT has been tested for different atmospheric condition against RT3, which is based on doubling-adding method, the results approve that SOSVRT is accurate and much more efficient in vector radiative transfer modeling, especially for optical thin atmosphere, which is the most cases in polarized radiative transfer simulation. SOSVRT is written in fortran 90 and the code is freely accessible by contacting the author.
  • [1] SHI Chong, WANG Pucai, Teruyuki NAKAJIMA, Yoshifumi OTA, TAN Saichun, SHI Guangyu, 2015: Effects of Ocean Particles on the Upwelling Radiance and Polarized Radiance in the Atmosphere-Ocean System, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1186-1196.  doi: 10.1007/s00376-015-4222-8
    [2] Feng ZHANG, Yadong LEI, Jia-Ren YAN, Jian-Qi ZHAO, Jiangnan LI, Qiudan DAI, 2017: A New Parameterization of Canopy Radiative Transfer for Land Surface Radiation Models, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 613-622.  doi: 10.1007/s00376-016-6139-2
    [3] Jose C. JIMENEZ-ESCALONA, Oscar PERALTA, 2010: Processing of Aerosol Particles in Convective Cumulus Clouds: Cases Study in the Mexican East Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1331-1343.  doi: 10.1007/s00376-010-9114-3
    [4] Hao LUO, Yong HAN, Chunsong LU, Jun YANG, Yonghua WU, 2019: Characteristics of Surface Solar Radiation under Different Air Pollution Conditions over Nanjing, China: Observation and Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1047-1059.  doi: 10.1007/s00376-019-9010-4
    [5] YANG Lu, WANG Zhenhui, CHU Yanli, ZHAO Hang, TANG Min, 2014: Water Vapor Motion Signal Extraction from FY-2E Longwave Infrared Window Images for Cloud-free Regions: The Temporal Difference Technique, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1386-1394.  doi: 10.1007/s00376-014-3165-9
    [6] Yaping Zhou, Ken C. Rutledge, Thomas P. Charlock, Norman G. Loeb, Seiji Kato, 2001: Atmospheric Corrections Using MODTRAN for TOA and Surface BRDF Characteristics from High Resolution Spectroradiometric/Angular Measurements from a Helicopter Platform, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 984-1004.  doi: 10.1007/BF03403518
    [7] Byung-Ju SOHN, Geun-Hyeok RYU, 2007: Seasonally Varying Reference Atmospheres for East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 181-190.  doi: 10.1007/s00376-007-0181-z
    [8] GUO Xia, LU Daren, LU Yao, 2007: A Simple but Accurate Ultraviolet Limb-Scan Spherically-Layered Radiative-Transfer-Model Based on Single-Scattering Physics, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 619-630.  doi: 10.1007/s00376-007-0619-3
    [9] Ping YANG, Kuo-Nan LIOU, Lei BI, Chao LIU, Bingqi YI, Bryan A. BAUM, 2015: On the Radiative Properties of Ice Clouds: Light Scattering, Remote Sensing, and Radiation Parameterization, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 32-63.  doi: 10.1007/s00376-014-0011-z
    [10] ZHAO Jian-Qi, SHI Guangyu, CHE Huizheng, CHENG Guangguang, 2006: Approximations of the Scattering Phase Functions of Particles, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 802-808.  doi: 10.1007/s00376-006-0802-y
    [11] Cai Qiming, Kuo-Nan Liou, 1985: CALCULATION ON THE LIGHT SCATTERING FUNCTION OF HEXAGONAL ICE CRYSTALS, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 446-454.  doi: 10.1007/BF02678743
    [12] Chunsheng ZHAO, Yingli YU, Ye KUANG, Jiangchuan TAO, Gang ZHAO, 2019: Recent Progress of Aerosol Light-scattering Enhancement Factor Studies in China, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1015-1026.  doi: 10.1007/s00376-019-8248-1
    [13] Mao Jietai, Luan Shengji, 1985: DERIVATION OF SCATTERING PHASE FUNCTION FROM CLEAR SKY BRIGHTNESS DISTRIBUTION, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 129-131.  doi: 10.1007/BF03179745
    [14] Yao Keya, Liu Chunlei, 1996: ICE Particle Size and Shape Effect on Solar Energy Scattering Angular Distribution, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 505-510.  doi: 10.1007/BF03342040
    [15] Sungkyun SHIN, Young Min NOH, Kwonho LEE, Hanlim LEE, Detlef M?LLER, Y. J. KIM, Kwanchul KIM, Dongho SHIN, 2014: Retrieval of the Single Scattering Albedo of Asian Dust Mixed with Pollutants Using Lidar Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1417-1426.  doi: 10.1007/s00376-014-3244-y
    [16] ZHANG Wu, HU Bo, CHEN Changhe, DU Ping, ZHANG Lei, FENG Guanghong, 2004: Scattering Properties of Atmospheric Aerosols over Lanzhou City and Applications Using an Integrating Nephelometer, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 848-856.  doi: 10.1007/BF02915587
    [17] Qiu Jinhuan, Wang Hongqi, Zhou Xiuji, Lu Daren, 1985: EXPERIMENTAL STUDY OF REMOTE SENSING OF ATMOSPHERIC AEROSOL SIZE DISTRIBUTION BY COMBINED SOLAR EXTINCTION AND FORWARD SCATTERING METHOD, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 307-315.  doi: 10.1007/BF02677246
    [18] DAI Qiudan, SUN Shufen, 2006: A Generalized Layered Radiative Transfer Model in the Vegetation Canopy, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 243-257.  doi: 10.1007/s00376-006-0243-7
    [19] DAI Qiudan, SUN Shufen, 2007: A Simplified Scheme of the Generalized Layered Radiative Transfer Model, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 213-226.  doi: 10.1007/s00376-007-0213-8
    [20] Yang Jingmei, Qiu Jinhuan, 1992: An Easy Algorithm for Solving Radiative Transfer Equation in Clear Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 483-490.  doi: 10.1007/BF02677081

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2010
Manuscript revised: 10 July 2010
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

A Polarized Radiative Transfer Model Based on Successive Order of Scattering

  • 1. Key Laboratory for Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,Atmospheric Sciences Research Center, State University of New York, Albany NY 12203,Key Laboratory for Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: Based on Successive Order of Scattering approach, a full Vector Radiative Transfer model (SOSVRT) for vertically inhomogeneous plane-parallel media has been developed. To overcome computational burden of convergence, a simple approximation technique by truncating scattering orders with a geometry serial is used to reduce computational time. Analytical Fourier decomposition of phase matrix with three symmetry relationships and two mutual inverse operators has been implemented to further improve the computation efficiency. To improve the accuracy, a post-processing procedure is implemented to accurately interpolate the Stokes vector at arbitrary angles. Comparisons with the benchmarks for an atmosphere of randomly orientated oblate spheroids show excellent agreement for each stokes parameter (within 0.1%). SOSVRT has been tested for different atmospheric condition against RT3, which is based on doubling-adding method, the results approve that SOSVRT is accurate and much more efficient in vector radiative transfer modeling, especially for optical thin atmosphere, which is the most cases in polarized radiative transfer simulation. SOSVRT is written in fortran 90 and the code is freely accessible by contacting the author.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return