Advanced Search
Article Contents

Evolution of the Total Lightning Activity in a Leading-Line and Trailing Stratiform Mesoscale Convective System over Beijing


doi: 10.1007/s00376-010-0001-8

  • Data from the Beijing SAFIR 3000 lightning detection system and Doppler radar provided some insights into the three-dimensional lightning structure and evolution of a leading-line and trailing-stratiform (LLTS) mesoscale convective system (MCS) over Beijing on 31 July 2007. Most of the lightning in the LLTS-MCS was intracloud (IC) lightning, while the mean ratio of positive cloud-to-ground (+CG) lightning to --CG lightning was 1:4, which was higher than the average value from previous studies. The majority of CG lightning occurred in the convective region of the radar echo, particularly at the leading edge of the front. Little IC lightning and little +CG lightning occurred in the stratiform region. The distribution of the CG lightning indicated that the storm had a tilted dipole structure given the wind shear or the tripole charge structure. During the storm's development, most of the IC lightning occurred at an altitude of ~9.5 km; the lightning rate reached its maximum at 10.5 km, the altitude of IC lightning in the mature stage of the storm. When the thunderstorm began to dissipate, the altitude of the IC lightning decreased gradually. The spatial distribution of lightning was well correlated with the rainfall on the ground, although the peak value of rainfall appeared 75 min later than the peak lightning rate.
  • [1] Jing YANG, Gaopeng LU, Ningyu LIU, Haihua CUI, Yu WANG, Morris COHEN, 2017: Analysis of a Mesoscale Convective System that Produced a Single Sprite, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 258-271.  doi: 10.1007/s00376-016-6092-0
    [2] Yali LUO, Weimiao QIAN, Yu GONG, Hongyan WANG, Da-Lin ZHANG, 2016: Ground-Based Radar Reflectivity Mosaic of Mei-yu Precipitation Systems over the Yangtze River-Huaihe River Basins, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1285-1296.  doi: 10.1007/s00376-016-6022-1
    [3] LIPING LUO, Ming Xue, Xin Xu, Lijuan Li, Qiang Zhang, Ziqi Fan, 2024: Understanding Simulated Causes of Damaging Surface Winds in a Derecho-Producing Mesoscale Convective System near the East China Coast based on Convection-Permitting Simulations, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3314-8
    [4] SUN Jianhua, ZHAO Sixiong, XU Guangkuo, MENG Qingtao, 2010: Study on a Mesoscale Convective Vortex Causing Heavy Rainfall during the Mei-yu Season in 2003, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1193-1209.  doi: 10.1007/s00376-009-9156-6
    [5] Changhai LIU, 2005: A Numerical Investigation of a Slow-Moving Convective Line in a Weakly Sheared Environment, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 625-639.  doi: 10.1007/BF02918706
    [6] Zhiwei HE, Qinghong ZHANG, Jun SUN, 2016: The Contribution of Mesoscale Convective Systems to Intense Hourly Precipitation Events during the Warm Seasons over Central East China, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1233-1239.  doi: 10.1007/s00376-016-6034-x
    [7] CHU Kekuan, TAN Zhemin, Ming XUE, 2007: Impact of 4DVAR Assimilation of Rainfall Data on the Simulation of Mesoscale Precipitation Systems in a Mei-yu Heavy Rainfall Event, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 281-300.  doi: 10.1007/s00376-007-0281-9
    [8] CHEN Min, ZHENG Yongguang, 2004: Vorticity Budget Investigation of a Simulated Long-Lived Mesoscale Vortex in South China, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 928-940.  doi: 10.1007/BF02915595
    [9] ZHAO Sixiong, BEI Naifang, SUN Jianhua, 2007: Mesoscale Analysis of a Heavy Rainfall Event over Hong Kong During a Pre-rainy Season in South China, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 555-572.  doi: 10.1007/s00376-007-0555-2
    [10] Ji-Hyun HA, Hyung-Woo KIM, Dong-Kyou LEE, 2011: Observation and Numerical Simulations with Radar and Surface Data Assimilation for Heavy Rainfall over Central Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 573-590.  doi: 10.1007/s00376-010-0035-y
    [11] Anjing HUANG, Gaopeng LU, Hongbo ZHANG, Feifan LIU, Yanfeng FAN, Baoyou ZHU, Jing YANG, Zhichao WANG, 2018: Locating Parent Lightning Strokes of Sprites Observed over a Mesoscale Convective System in Shandong Province, China, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1396-1414.  doi: 10.1007/s00376-018-7306-4
    [12] Qi LI, Fengxia GUO, Xiaoyu JU, Ze LIU, Mingjun GAN, Kun ZHANG, Binbin CAI, 2023: Estimation of Lightning-Generated NOx in the Mainland of China Based on Cloud-to-Ground Lightning Location Data, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 129-143.  doi: 10.1007/s00376-022-1329-6
    [13] Wanli LI, Xiushu QIE, Shenming FU, Debin SU, Yonghai SHEN, 2016: Simulation of Quasi-Linear Mesoscale Convective Systems in Northern China: Lightning Activities and Storm Structure, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 85-100.  doi: 10.1007/s00376-015-4170-3
    [14] Manman MA, Xiaogang HUANG, Jianfang FEI, Chi ZHANG, Chao LI, Xiaoping CHENG, 2022: Analysis of the Winter Cloud-to-Ground Lightning Activity and Its Synoptic Background in China during 2010–20, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 985-998.  doi: 10.1007/s00376-021-1260-2
    [15] Fan Beifen, Ye Jiadong, William R. Cotton, Gregory J. Tripoli, 1990: Numerical Simulation of Microphysics in Meso-β-Scale Convective Cloud System Associated with a Mesoscale Convective Complex, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 154-170.  doi: 10.1007/BF02919153
    [16] Dong ZHENG, Yijun ZHANG, Qing MENG, Luwen CHEN, Jianru DAN, 2016: Climatology of Lightning Activity in South China and Its Relationships to Precipitation and Convective Available Potential Energy, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 365-376.  doi: 10.1007/s00376-015-5124-5
    [17] Yang LI, Yubao LIU, Rongfu SUN, Fengxia GUO, Xiaofeng XU, Haixiang XU, 2023: Convective Storm VIL and Lightning Nowcasting Using Satellite and Weather Radar Measurements Based on Multi-Task Learning Models, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 887-899.  doi: 10.1007/s00376-022-2082-6
    [18] Huaming ZHANG, Yijun ZHANG, Weitao LYU, Yang ZHANG, Qi QI, Yanfeng FAN, 2019: Analysis of the Spectral Characteristics of Triggered Lightning, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1265-1272.  doi: 10.1007/s00376-019-9006-0
    [19] Yanqing Gao, Xiaofeng Wang, Wei Guo, 2024: Impact of Assimilating FY-4A Lightning Data with a Latent Heat Nudging Method on Short-Term Forecasts of Severe Convective Events in Eastern China, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3339-z
    [20] WANG Yanhui, ZHANG Guangshu, ZHANG Tong, LI Yajun, WU Bin, and ZHANG Tinglong, 2013: Interaction between adjacent lightning discharges in clouds, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1106-1116.  doi: 10.1007/s00376-012-2008-9

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2011
Manuscript revised: 10 July 2011
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Evolution of the Total Lightning Activity in a Leading-Line and Trailing Stratiform Mesoscale Convective System over Beijing

  • 1. Key Laboratory of Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,Key Laboratory of Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,Beijing Meteorological Bureau, Beijing 100089,Lightning Protection Center of Shandong, Jinan 250023

Abstract: Data from the Beijing SAFIR 3000 lightning detection system and Doppler radar provided some insights into the three-dimensional lightning structure and evolution of a leading-line and trailing-stratiform (LLTS) mesoscale convective system (MCS) over Beijing on 31 July 2007. Most of the lightning in the LLTS-MCS was intracloud (IC) lightning, while the mean ratio of positive cloud-to-ground (+CG) lightning to --CG lightning was 1:4, which was higher than the average value from previous studies. The majority of CG lightning occurred in the convective region of the radar echo, particularly at the leading edge of the front. Little IC lightning and little +CG lightning occurred in the stratiform region. The distribution of the CG lightning indicated that the storm had a tilted dipole structure given the wind shear or the tripole charge structure. During the storm's development, most of the IC lightning occurred at an altitude of ~9.5 km; the lightning rate reached its maximum at 10.5 km, the altitude of IC lightning in the mature stage of the storm. When the thunderstorm began to dissipate, the altitude of the IC lightning decreased gradually. The spatial distribution of lightning was well correlated with the rainfall on the ground, although the peak value of rainfall appeared 75 min later than the peak lightning rate.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return