Advanced Search
Article Contents

The Role of Changes in the Annual Cycle in Earlier Onset of Climatic Spring in Northern China


doi: 10.1007/s00376-010-9221-1

  • Climatic changes in the onset of spring in northern China associated with changes in the annual cycle and with a recent warming trend were quantified using a recently developed adaptive data analysis tool, the Ensemble Empirical Mode Decomposition. The study was based on a homogenized daily surface air temperature (SAT) dataset for the period 1955--2003. The annual cycle here is referred to as a refined modulated annual cycle (MAC). The results show that spring at Beijing has arrived significantly earlier by about 2.98 d (10 yr)-1, of which about 1.85 d (10 yr)-1 is due to changes in the annual cycle and 1.13 d (10 yr)-1 due to the long-term warming trend. Variations in the MAC component explain about 92.5% of the total variance in the Beijing daily SAT series and could cause as much as a 20-day shift in the onset of spring from one year to another. The onset of spring has been advancing all over northern China, but more significant in the east than in the west part of the region. These differences are somehow unexplainable by the zonal pattern of the warming trend over the whole region, but can be explained by opposite changes in the spring phase of the MAC, i.e. advancing in the east while delaying in the west. In the east of northern China, the change in the spring phase of MAC explains 40%--60% of the spring onset trend and is attributable to a weakening Asian winter monsoon. The average sea level pressure in Siberia (55o--80oN, 50o--110oE), an index of the strength of the winter monsoon, could serve as a potential short-term predictor for the onset of spring in the east of northern China.
  • [1] QIAN Cheng, YAN Zhongwei, Zhaohua WU, FU Congbin, TU Kai, 2011: Trends in Temperature Extremes in Association with Weather-Intraseasonal Fluctuations in Eastern China, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 297-309.  doi: 10.1007/s00376-010-9242-9
    [2] FANG Changfang*, WU Lixin, and ZHANG Xiang, 2014: The Impact of Global Warming on the Pacific Decadal Oscillation and the Possible Mechanism, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 118-130.  doi: 10.1007/s00376-013-2260-7
    [3] LIU Yonghe, FENG Jinming, MA Zhuguo, 2014: An Analysis of Historical and Future Temperature Fluctuations over China Based on CMIP5 Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 457-467.  doi: 10.1007/s00376-013-3093-0
    [4] QIAN Cheng, Zhaohua WU, FU Congbin, ZHOU Tianjun, 2010: On Multi-Timescale Variability of Temperature in China in Modulated Annual Cycle Reference Frame, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1169-1182.  doi: 10.1007/s00376-009-9121-4
    [5] LIU Chengyan* and WANG Zhaomin, , 2014: On the Response of the Global Subduction Rate to Global Warming in Coupled Climate Models, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 211-218.  doi: 10.1007/s00376-013-2323-9
    [6] Ruosi ZHANG, Shang-Ping XIE, Lixiao XU, Qinyu LIU, 2016: Changes in Mixed Layer Depth and Spring Bloom in the Kuroshio Extension under Global Warming, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 452-461.  doi: 10.1007/s00376-015-5113-8
    [7] P. P. BABURAJ, S. ABHILASH, K. MOHANKUMAR, A. K. SAHAI, 2020: On the Epochal Variability in the Frequency of Cyclones during the Pre-Onset and Onset Phases of the Monsoon over the North Indian Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 634-651.  doi: 10.1007/s00376-020-9070-5
    [8] Ran LIU, Changlin CHEN, Guihua WANG, 2016: Change of Tropical Cyclone Heat Potential in Response to Global Warming, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 504-510.  doi: 10.1007/s00376-015-5112-9
    [9] M.Lal, 1994: Water Resources of the South Asian Region in a Warmer Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 239-246.  doi: 10.1007/BF02666550
    [10] Xiaofei GAO, Jiawen ZHU, Xiaodong ZENG, Minghua ZHANG, Yongjiu DAI, Duoying JI, He ZHANG, 2022: Changes in Global Vegetation Distribution and Carbon Fluxes in Response to Global Warming: Simulated Results from IAP-DGVM in CAS-ESM2, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1285-1298.  doi: 10.1007/s00376-021-1138-3
    [11] YANG Jing, BAO Qing, WANG Xiaocong, 2013: Intensified Eastward and Northward Propagation of Tropical Intraseasonal Oscillation over the Equatorial Indian Ocean in a Global Warming Scenario, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 167-174.  doi: 10.1007/s00376-012-1260-3
    [12] WEI Xiaolin, LIU Qian, Ka Se LAM, WANG Tijian, 2012: Impact of Precursor Levels and Global Warming on Peak Ozone Concentration in the Pearl River Delta Region of China, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 635-645.  doi: 10.1007/s00376-011-1167-4
    [13] Yiyong LUO, Jian LU, Fukai LIU, Xiuquan WAN, 2016: The Positive Indian Ocean Dipole-like Response in the Tropical Indian Ocean to Global Warming, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 476-488.  doi: 10.1007/s00376-015-5027-5
    [14] Jingchao LONG, Suping ZHANG, Yang CHEN, Jingwu LIU, Geng HAN, 2016: Impact of the Pacific-Japan Teleconnection Pattern on July Sea Fog over the Northwestern Pacific: Interannual Variations and Global Warming Effect, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 511-521.  doi: 10.1007/s00376-015-5097-4
    [15] Yawen DUAN, Peili WU, Xiaolong CHEN, Zhuguo MA, 2018: Assessing Global Warming Induced Changes in Summer Rainfall Variability over Eastern China Using the Latest Hadley Centre Climate Model HadGEM3-GC2, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1077-1093.  doi: 10.1007/s00376-018-7264-x
    [16] Tim LI, ZHANG Lei, Hiroyuki MURAKAMI, 2015: Strengthening of the Walker Circulation under Global Warming in an Aqua-Planet General Circulation Model Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1473-1480.  doi: 10.1007/s00376-015-5033-7
    [17] Yuan WANG, 2015: Air Pollution or Global Warming: Attribution of Extreme Precipitation Changes in Eastern China——Comments on "Trends of Extreme Precipitation in Eastern China and Their Possible Causes", ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1444-1446.  doi: 10.1007/s00376-015-5109-4
    [18] SONG Yi, YU Yongqiang, LIN Pengfei, 2014: The Hiatus and Accelerated Warming Decades in CMIP5 Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1316-1330.  doi: 10.1007/s00376-014-3265-6
    [19] Jun YING, Ping HUANG, Ronghui HUANG, 2016: Evaluating the Formation Mechanisms of the Equatorial Pacific SST Warming Pattern in CMIP5 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 433-441.  doi: 10.1007/s00376-015-5184-6
    [20] Shuangmei MA, Congwen ZHU, Juan LIU, 2020: Combined Impacts of Warm Central Equatorial Pacific Sea Surface Temperatures and Anthropogenic Warming on the 2019 Severe Drought in East China, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1149-1163.  doi: 10.1007/s00376-020-0077-8

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2011
Manuscript revised: 10 March 2011
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

The Role of Changes in the Annual Cycle in Earlier Onset of Climatic Spring in Northern China

  • 1. The Role of Changes in the Annual Cycle in Earlier Onset of Climatic Spring in Northern China,Key Laboratory of Regional Climate--Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, Institute for Climate and Global Change Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210093,Department of Earth, Ocean and Atmospheric Science & Center for Ocean--Atmospheric Prediction Studies, Florida State University, Tallahassee, Florida, USA,Key Laboratory of Regional Climate--Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: Climatic changes in the onset of spring in northern China associated with changes in the annual cycle and with a recent warming trend were quantified using a recently developed adaptive data analysis tool, the Ensemble Empirical Mode Decomposition. The study was based on a homogenized daily surface air temperature (SAT) dataset for the period 1955--2003. The annual cycle here is referred to as a refined modulated annual cycle (MAC). The results show that spring at Beijing has arrived significantly earlier by about 2.98 d (10 yr)-1, of which about 1.85 d (10 yr)-1 is due to changes in the annual cycle and 1.13 d (10 yr)-1 due to the long-term warming trend. Variations in the MAC component explain about 92.5% of the total variance in the Beijing daily SAT series and could cause as much as a 20-day shift in the onset of spring from one year to another. The onset of spring has been advancing all over northern China, but more significant in the east than in the west part of the region. These differences are somehow unexplainable by the zonal pattern of the warming trend over the whole region, but can be explained by opposite changes in the spring phase of the MAC, i.e. advancing in the east while delaying in the west. In the east of northern China, the change in the spring phase of MAC explains 40%--60% of the spring onset trend and is attributable to a weakening Asian winter monsoon. The average sea level pressure in Siberia (55o--80oN, 50o--110oE), an index of the strength of the winter monsoon, could serve as a potential short-term predictor for the onset of spring in the east of northern China.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return