Advanced Search
Article Contents

An Investigation into the Relationship between Surface Rain Rate and Rain Depth over Southeast Asia


doi: 10.1007/s00376-012-2097-5

  • The relationship between surface rain rate and depth of rain system (rain depth) over Southeast Asia is examined using 10-yr Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) measurements. Results show that, in general, a large surface rain rate is associated with a deep precipitating system, but a deep rain system may not always correspond with a large surface rain rate. This feature has a regional characteristic. Convective rain develops more frequently over land than over the ocean, while stratiform rain can extend to higher altitudes over the ocean than over land. A light surface rain rate has the largest probability to occur, regardless of rain depth. A convective rain system is more likely associated with a stronger surface rain rate than a stratiform rain system. Results show that precipitation systems involve complex microphysical processes. Rain depth is just one characteristic of precipitation. A linear relationship between surface rain rate and rain depth does not exist. Both deep convective and stratiform rain systems have reflectivity profiles that can be divided into three sections. The main difference in their profiles is at higher levels, from 4.5 km up to 19 km. For shallow stratiform rain systems, a two-section reflectivity profile mainly exists, while for convective systems a three-section profile is more common.
  • [1] Long S. CHIU, Zhong LIU, Jearanai VONGSAARD, Stanley MORAIN, Amy BUDGE, Paul NEVILLE, Chandra BALES, 2006: Comparison of TRMM and Water District Rain Rates over New Mexico, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 1-13.  doi: 10.1007/s00376-006-0001-x
    [2] HU Liang, Song YANG, LI Yaodong, GAO Shouting, 2010: Diurnal Variability of Precipitation Depth Over the Tibetan Plateau and its Surrounding Regions, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 115-122.  doi: 10.1007/s00376-009-8193-5
    [3] Ravidho RAMADHAN, MARZUKI, Mutya VONNISA, HARMADI, Hiroyuki HASHIGUCHI, Toyoshi SHIMOMAI, 2020: Diurnal Variation in the Vertical Profile of the Raindrop Size Distribution for Stratiform Rain as Inferred from Micro Rain Radar Observations in Sumatra, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 832-846.  doi: 10.1007/s00376-020-9176-9
    [4] T. N. KRISHNAMURTI, A. D. SAGADEVAN, A. CHAKRABORTY, A. K. MISHRA, A. SIMON, 2009: Improving Multimodel Weather Forecast of Monsoon Rain Over China Using FSU Superensemble, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 813-839.  doi: 10.1007/s00376-009-8162-z
    [5] Shuang LUO, Yunfei FU, Shengnan ZHOU, Xiaofeng WANG, Dongyong WANG, 2020: Analysis of the Relationship between the Cloud Water Path and Precipitation Intensity of Mature Typhoons in the Northwest Pacific Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 359-376.  doi: 10.1007/s00376-020-9204-9
    [6] LI Xiangshu, GUO Xueliang, FU Danhong, 2013: TRMM-retrieved Cloud Structure and Evolution of MCSs over the Northern South China Sea and Impacts of CAPE and Vertical Wind Shear, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 77-88.  doi: 10.1007/s00376-012-2055-2
    [7] CHEN Haoming, YUAN Weihua, LI Jian, YU Rucong, 2012: A Possible Cause for Different Diurnal Variations of Warm Season Rainfall as Shown in Station Observations and TRMM 3B42 Data over the Southeastern Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 193-200.  doi: 10.1007/s00376-011-0218-1
    [8] YANG Jing, YANG Meirong, LIU Chao, FENG Guili, 2013: Case Studies of Sprite-producing and Non-sprite-producing Summer Thunderstorms, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1786-1808.  doi: 10.1007/s00376-013-2120-5
    [9] MA Leiming, DUAN Yihong, ZHU Yongti, 2004: The Structure and Rainfall Features of Tropical Cyclone Rammasun (2002), ADVANCES IN ATMOSPHERIC SCIENCES, 21, 951-963.  doi: 10.1007/BF02915597
    [10] Hong WANG, Hengchi LEI, Jiefan YANG, 2017: Microphysical Processes of a Stratiform Precipitation Event over Eastern China: Analysis Using Micro Rain Radar data, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1472-1482.  doi: 10.1007/s00376-017-7005-6
    [11] WEN Lijuan, Nidhi NAGABHATLA, Lü Shihua, Shih-Yu WANG, 2013: Impact of Rain Snow Threshold Temperature on Snow Depth Simulation in Land Surface and Regional Atmospheric Models, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1449-1460.  doi: 10.1007/s00376-012-2192-7
    [12] BAO Ming, 2008: Relationship Between Persistent Heavy Rain Events in the Huaihe River Valley and the Distribution Pattern of Convective Activities in the Tropical Western Pacific Warm Pool, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 329-338.  doi: 10.1007/s00376-008-0329-5
    [13] LIU Xiaoyang, MAO Jietai, ZHU Yuanjing, LI Jiren, 2003: Runoff Simulation Using Radar and Rain Gauge Data, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 213-218.  doi: 10.1007/s00376-003-0006-7
    [14] Keon Tae SOHN, Jeong Hyeong LEE, Soon Hwan LEE, Chan Su RYU, 2005: Statistical Prediction of Heavy Rain in South Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 703-710.  doi: 10.1007/BF02918713
    [15] Bao Chenglan, 1985: ADVANCES IN THE SOUTH CHINA FFS HEAVY RAIN RESEARCH, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 282-294.  doi: 10.1007/BF02677244
    [16] Dai Honghua, Zheng Qisong, Zhao Zhaoxin, 1987: AN EXPERT SYSTEM FOR PREDICTING THE REGIONAL HEAVY RAIN, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 496-505.  doi: 10.1007/BF02656748
    [17] Wang Mingxing, 1984: DEFICIT OF PARTICULATE CHLORINE AND THE NONACID RAIN IN BEIJING, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 76-94.  doi: 10.1007/BF03187618
    [18] Zhao Bolin, 1990: Study on Microwave Remote Sensing of Atmosphere, Cloud and Rain, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 475-490.  doi: 10.1007/BF03342566
    [19] Xu Guochang, Li Meifang, Zhang Zhiyin, 1985: SEASONAL VARIATION OF RAIN-BELTS OVER CHINA, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 368-375.  doi: 10.1007/BF02677253
    [20] JING Li, LU Hancheng, WANG Hanjie, ZHU Min, KOU Zheng, 2004: A Mesoscale Analysis of Heavy Rain Caused by Frontal and Topographical Heterogeneities on Taiwan Island, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 909-922.  doi: 10.1007/BF02663597

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 2013
Manuscript revised: 10 January 2013
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

An Investigation into the Relationship between Surface Rain Rate and Rain Depth over Southeast Asia

  • 1. National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, Beijing Aviation Meteorological Institute, Beijing 100085;Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: The relationship between surface rain rate and depth of rain system (rain depth) over Southeast Asia is examined using 10-yr Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) measurements. Results show that, in general, a large surface rain rate is associated with a deep precipitating system, but a deep rain system may not always correspond with a large surface rain rate. This feature has a regional characteristic. Convective rain develops more frequently over land than over the ocean, while stratiform rain can extend to higher altitudes over the ocean than over land. A light surface rain rate has the largest probability to occur, regardless of rain depth. A convective rain system is more likely associated with a stronger surface rain rate than a stratiform rain system. Results show that precipitation systems involve complex microphysical processes. Rain depth is just one characteristic of precipitation. A linear relationship between surface rain rate and rain depth does not exist. Both deep convective and stratiform rain systems have reflectivity profiles that can be divided into three sections. The main difference in their profiles is at higher levels, from 4.5 km up to 19 km. For shallow stratiform rain systems, a two-section reflectivity profile mainly exists, while for convective systems a three-section profile is more common.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return