Advanced Search
Article Contents

Three-year observations of ozone columns over polar vortex edge area above West Antarctica

Fund Project:

National Natural Science Foundation of China

  • The ozone vertical column densities (VCDs) were retrieved by Zenith Scattered Light-Differential Optical Absorption Spectroscopy (ZSL-DOAS) from January 2017 to February 2020 over Fildes Peninsula, West Antarctica (62.22S, 58.96W). The retrieved ozone VCDs started to decline around July with a comparable gradient (around 1.4 DU/day), then dropped to the lowest level in September and October, when the ozone holes appeared (less than 220 DU). The daily mean values of ozone columns were compared with OMI and GOME-2 satellite observations and MERRA-2 reanalysis dataset, with the correlation coefficients (R^2) of 0.86, 0.94 and 0.90 respectively. To better understand the causes of ozone depletion, the retrieved ozone columns, temperature and potential vorticity (PV) at certain altitude were analyzed. The profiles of ozone and PV showed positive correlation during the fluctuations, which indicates that polar vortex has great influence on stratospheric ozone depletion during Antarctic spring. Located at the edge of polar vortex, the observed data will provide a basis for further analysis and prediction of the inter-annual variation of stratospheric ozone in future.
  • [1] LIU Huizhi, TU Gang, FU Congbin, SHI Liqing, 2008: Three-year Variations of Water, Energy and CO$_2$ Fluxes of Cropland and Degraded Grassland Surfaces in a Semi-arid Area of Northeastern China, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 1009-1020.  doi: 10.1007/s00376-008-1009-1
    [2] LIU Yi, LIU Chuanxi, Xuexi TIE, GAO Shouting, 2011: Middle Stratospheric Polar Vortex Ozone Budget during the Warming Arctic Winter, 2002--2003, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 985-996.  doi: 10.1007/s00376-010-0045-9
    [3] Chen Yuejuan, Zhang Hong, Bi Xunqiang, 1998: Numerical Experiment for the Impact of the Ozone Hole over Antarctica on the Global Climate, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 300-311.  doi: 10.1007/s00376-998-0002-z
    [4] Qu Shaohou, 1989: Observation Research of the Turbulent Fluxes of Momentum, Sensible Heat and Latent Heat over the West Pacific Tropical Ocean Area, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 254-264.  doi: 10.1007/BF02658021
    [5] Gao Dengyi, Sadao Kawagochi, 1986: RELATIONSHIP BETWEEN THE INCREASE TEMPERATURE AND VARIATION OF OZONE LEVEL OVER THE ANTARCTICA AND TIBETAN PLATEAU IN SPRING, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 489-498.  doi: 10.1007/BF02657938
    [6] Aoqi ZHANG, Weibiao LI, Shumin CHEN, Yilun CHEN, Yunfei FU, 2021: Satellite Observations of Reflectivity Maxima above the Freezing Level Induced by Terrain, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-020-0221-5
    [7] Shuanglin Li, 2010: A Comparison of Polar Vortex Response to Pacific and Indian Ocean Warming, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 469-482.  doi: 10.1007/s00376-009-9116-1
    [8] LI Lin, LI Chongyin, PAN Jing, TAN Yanke, 2012: On the Differences and Climate Impacts of Early and Late Stratospheric Polar Vortex Breakup, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1119-1128.  doi: 10.1007/s00376-012-1012-4
    [9] REN Rongcai, Ming CAI, 2006: Polar Vortex Oscillation Viewed in an Isentropic Potential Vorticity Coordinate, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 884-900.  doi: 10.1007/s00376-006-0884-6
    [10] Yushan SONG, Daren LÜ, Qian LI, Jianchun BIAN, Xue WU, Dan LI, 2016: The Impact of Cut-off Lows on Ozone in the Upper Troposphere and Lower Stratosphere over Changchun from Ozonesonde Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 135-150.  doi: 10.1007/s00376-015-5054-2
    [11] Qinghua YANG, Jiping LIU, Matti LEPPÄRANTA, Qizhen SUN, Rongbin LI, Lin ZHANG, Thomas JUNG, Ruibo LEI, Zhanhai ZHANG, Ming LI, Jiechen ZHAO, Jingjing CHENG, 2016: Albedo of Coastal Landfast Sea Ice in Prydz Bay, Antarctica: Observations and Parameterization, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 535-543.  doi: 10.1007/s00376-015-5114-7
    [12] SHI Chun'e, ZHANG Baoning, 2008: Tropospheric NO2 Columns over Northeastern North America: Comparison of CMAQ Model Simulations with GOME Satellite Measurements, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 59-71.  doi: 10.1007/s00376-008-0059-8
    [13] Yifan DING, Xiao CHENG, Xichen LI, Mohammed SHOKR, Jiawei YUAN, Qinghua YANG, Fengming HUI, 2020: Specific Relationship between the Surface Air Temperature and the Area of the Terra Nova Bay Polynya, Antarctica, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 532-544.  doi: 10.1007/s00376-020-9146-2
    [14] CHEN Wen, WEI Ke, 2009: Interannual Variability of the Winter Stratospheric Polar Vortex in the Northern Hemisphere and their Relations to QBO and ENSO, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 855-863.  doi: 10.1007/s00376-009-8168-6
    [15] LIAN Yi, SHEN Baizhu, LI Shangfeng, ZHAO Bin, GAO Zongting, LIU Gang, LIU Ping, CAO Ling, 2013: Impacts of Polar Vortex, NPO, and SST Configurations on Unusually Cool Summers in Northeast China. Part I: Analysis and Diagnosis, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 193-209.  doi: 10.1007/s00376-012-1258-x
    [16] LI Qian, Hans-F. GRAF, CUI Xuefeng, 2011: The Role of Stationary and Transient Planetary Waves in the Maintenance of Stratospheric Polar Vortex Regimes in Northern Hemisphere Winter, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 187-194.  doi: 10.1007/s00376-010-9163-7
    [17] LI Shuanglin, CHEN Xiaoting, 2014: Quantifying the Response Strength of the Southern Stratospheric Polar Vortex to Indian Ocean Warming in Austral Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 492-503.  doi: 10.1007/s00376-013-2322-x
    [18] YANG Jing, BAO Qing, JI Duoying, GONG Daoyi, MAO Rui, ZHANG Ziyin, Seong-Joong KIM, 2014: Simulation and Causes of Eastern Antarctica Surface Cooling Related to Ozone Depletion during Austral Summer in FGOALS-s2, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1147-1156.  doi: 10.1007/s00376-014-3144-1
    [19] XU Jun, ZHANG Yuanhang, WANG Wei, 2006: Numerical Study on the Impacts of Heterogeneous Reactions on Ozone Formation in the Beijing Urban Area, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 605-614.  doi: 10.1007/s00376-006-0605-1
    [20] Qizhen SUN, Timo VIHMA, Marius O. JONASSEN, Zhanhai ZHANG, 2020: Impact of Assimilation of Radiosonde and UAV Observations from the Southern Ocean in the Polar WRF Model, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 441-454.  doi: 10.1007/s00376-020-9213-8

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 21 July 2020
Manuscript revised: 29 December 2020
Manuscript accepted: 12 January 2021
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Three-year observations of ozone columns over polar vortex edge area above West Antarctica

Abstract: The ozone vertical column densities (VCDs) were retrieved by Zenith Scattered Light-Differential Optical Absorption Spectroscopy (ZSL-DOAS) from January 2017 to February 2020 over Fildes Peninsula, West Antarctica (62.22S, 58.96W). The retrieved ozone VCDs started to decline around July with a comparable gradient (around 1.4 DU/day), then dropped to the lowest level in September and October, when the ozone holes appeared (less than 220 DU). The daily mean values of ozone columns were compared with OMI and GOME-2 satellite observations and MERRA-2 reanalysis dataset, with the correlation coefficients (R^2) of 0.86, 0.94 and 0.90 respectively. To better understand the causes of ozone depletion, the retrieved ozone columns, temperature and potential vorticity (PV) at certain altitude were analyzed. The profiles of ozone and PV showed positive correlation during the fluctuations, which indicates that polar vortex has great influence on stratospheric ozone depletion during Antarctic spring. Located at the edge of polar vortex, the observed data will provide a basis for further analysis and prediction of the inter-annual variation of stratospheric ozone in future.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return