Advanced Search

2018 Vol. 35, No. 10

Display Method:
Value-added Impact of Geostationary Hyperspectral Infrared Sounders on Local Severe Storm Forecasts——via a Quick Regional OSSE
Zhenglong LI, Jun LI, Pei WANG, Agnes LIM, Jinlong LI, Timothy J. SCHMIT, Robert ATLAS, Sid-Ahmed BOUKABARA, Ross N. HOFFMAN
2018, 35(10): 1217-1230. doi: 10.1007/s00376-018-8036-3
Accurate atmospheric temperature and moisture information with high temporal/spatial resolutions are two of the key parameters needed in regional numerical weather prediction (NWP) models to reliably predict high-impact weather events such as local severe storms (LSSs). High spectral resolution or hyperspectral infrared (HIR) sounders from geostationary orbit (GEO) provide an unprecedented source of near time-continuous, three-dimensional information on the dynamic and thermodynamic atmospheric fields——an important benefit for nowcasting and NWP-based forecasting. In order to demonstrate the value of GEO HIR sounder radiances on LSS forecasts, a quick regional OSSE (Observing System Simulation Experiment) framework has been developed, including high-resolution nature run generation, synthetic observation simulation and validation, and impact study on LSS forecasts. Results show that, on top of the existing LEO (low earth orbit) sounders, a GEO HIR sounder may provide value-added impact [a reduction of 3.56% in normalized root-mean-square difference (RMSD)] on LSS forecasts due to large spatial coverage and high temporal resolution, even though the data are assimilated every 6 h with a thinning of 60 km. Additionally, more frequent assimilations and smaller thinning distances allow more observations to be assimilated, and may further increase the positive impact from a GEO HIR sounder. On the other hand, with denser and more frequent observations assimilated, it becomes more difficult to handle the spatial error correlation in observations and gravity waves due to the limitations of current assimilation and forecast systems (such as a static background error covariance). The peak reduction of 4.6% in normalized RMSD is found when observations are assimilated every 3 h with a thinning distance of 30 km.
Subseasonal Change in the Seesaw Pattern of Precipitation between the Yangtze River Basin and the Tropical Western North Pacific during Summer
Xinyu LI, Riyu LU
2018, 35(10): 1231-1242. doi: 10.1007/s00376-018-7304-6
There is a well-known seesaw pattern of precipitation between the tropical western North Pacific (WNP) and the Yangtze River basin (YRB) during summer. This study identified that this out-of-phase relationship experiences a subseasonal change; that is, the relationship is strong during early summer but much weaker during mid-summer. We investigated the large-scale circulation anomalies responsible for the YRB rainfall anomalies on the subseasonal timescale. It was found that the YRB rainfall is mainly affected by the tropical circulation anomalies during early summer, i.e., the anticyclonic or cyclonic anomaly over the subtropical WNP associated with the precipitation anomalies over the tropical WNP. During mid-summer, the YRB rainfall is mainly affected by the extratropical circulation anomalies in both the lower and upper troposphere. In the lower troposphere, the northeasterly anomaly north of the YRB favors heavier rainfall over the YRB by intensifying the meridional gradient of the equivalent potential temperature over the YRB. In the upper troposphere, the meridional displacement of the Asian westerly jet and the zonally oriented teleconnection pattern along the jet also affect the YRB rainfall. The subseasonal change in the WNP-YRB precipitation relationship illustrated by this study has important implications for the subseasonal-to-seasonal forecasting of the YRB rainfall.
A High-Resolution Modeling Study of the 19 June 2002 Convective Initiation Case during IHOP_2002: Localized Forcing by Horizontal Convective Rolls
Qi-Wei WANG, Ming XUE
2018, 35(10): 1243-1253. doi: 10.1007/s00376-018-7218-3
The initiation processes of one of the initial convective cells near and on the east side of a dryline on 19 June 2002 during the IHOP_2002 field experiment in the central United States is analyzed in detail based on a high-resolution numerical simulation. Prominent horizontal convective rolls and associated near-surface moisture convergence bands [called roll convergence bands (RCBs) here] develop within the convective boundary layer (CBL) due to surface heating, in the hours leading to convective initiation (CI). The RCBs east of the dryline are advected toward the primary dryline convergence boundary (PDCB) by the southerly moist flow as the CBL deepens with time. Backward trajectories of air parcels forming the initial precipitating updraft of the convective cell are found to primarily originate at about 1-1.5 km above ground, within the upper portion of the shallower CBL earlier on. The representative air parcel is found to follow and stay on top of a surface RCB as the RCB moves toward the PDCB, but the RCB forcing alone is not enough to initiate convection. As this RCB gets close to the PDCB, it moves into a zone of mesoscale convergence and a deeper CBL that exhibits an upward moisture bulge associated with the PDCB. The combined upward forcing of the RCB and the mesoscale PDCB convergence quickly lifts the representative air parcel above its level of free convection to initiate convection. A conceptual model summarizing the CI processes is proposed.
Impact of Global Oceanic Warming on Winter Eurasian Climate
Xin HAO, Shengping HE, Tingting HAN, Huijun WANG
2018, 35(10): 1254-1264. doi: 10.1007/s00376-018-7216-5
In the 20th century, Eurasian warming was observed and was closely related to global oceanic warming (the first leading rotated empirical orthogonal function of annual mean sea surface temperature over the period 1901-2004). Here, large-scale patterns of covariability between global oceanic warming and circulation anomalies are investigated based on NCEP-NCAR reanalysis data. In winter, certain dominant features are found, such as a positive pattern of the North Atlantic Oscillation (NAO), low-pressure anomalies over northern Eurasia, and a weakened East Asian trough. Numerical experiments with the CAM3.5, CCM3 and GFDL models are used to explore the contribution of global oceanic warming to the winter Eurasian climate. Results show that a positive NAO anomaly, low-pressure anomalies in northern Eurasia, and a weaker-than-normal East Asian trough are induced by global oceanic warming. Consequently, there are warmer winters in Europe and the northern part of East Asia. However, the Eurasian climate changes differ slightly among the three models. Eddy forcing and convective heating from those models may be the reason for the different responses of Eurasian climate.
High-Order Statistics of Temperature Fluctuations in an Unstable Atmospheric Surface Layer over Grassland
Rui LYU, Fei HU, Lei LIU, Jingjing XU, Xueling CHENG
2018, 35(10): 1265-1276. doi: 10.1007/s00376-018-7248-x
Skewness (S) and kurtosis (K) of temperature in the surface layer over a grassland are investigated under unstable thermal stratifications. We find that both skewness and kurtosis generally obey Monin-Obukhov similarity theory and tend to be constant values (1.5 and 5.3, respectively) when the stability parameter z/L-2. Quantitative formulas of the similarity functions are proposed. The temperature probability density function (PDF) is close to Gaussian in near neutral stratification and non-Gaussian in unstable stratification. The influence of coherent motions on the PDF behavior is analyzed using the quadrant analysis technique. It shows that PDF behaviors are controlled by ejections and sweeps. The results also indicate that the PDF type of the ejections always follows a Gaussian distribution, while the PDF of the sweeps changes with stability.
Possible Sources of Forecast Errors Generated by the Global/Regional Assimilation and Prediction System for Landfalling Tropical Cyclones. Part II: Model Uncertainty
Feifan ZHOU, Wansuo DUAN, He ZHANG, Munehiko YAMAGUCHI
2018, 35(10): 1277-1290. doi: 10.1007/s00376-018-7095-9
This paper investigates the possible sources of errors associated with tropical cyclone (TC) tracks forecasted using the Global/Regional Assimilation and Prediction System (GRAPES). In Part I, it is shown that the model error of GRAPES may be the main cause of poor forecasts of landfalling TCs. Thus, a further examination of the model error is the focus of Part II. Considering model error as a type of forcing, the model error can be represented by the combination of good forecasts and bad forecasts. Results show that there are systematic model errors. The model error of the geopotential height component has periodic features, with a period of 24 h and a global pattern of wavenumber 2 from west to east located between 60°S and 60°N. This periodic model error presents similar features as the atmospheric semidiurnal tide, which reflect signals from tropical diabatic heating, indicating that the parameter errors related to the tropical diabatic heating may be the source of the periodic model error. The above model errors are subtracted from the forecast equation and a series of new forecasts are made. The average forecasting capability using the rectified model is improved compared to simply improving the initial conditions of the original GRAPES model. This confirms the strong impact of the periodic model error on landfalling TC track forecasts. Besides, if the model error used to rectify the model is obtained from an examination of additional TCs, the forecasting capabilities of the corresponding rectified model will be improved.
Assimilation of Sea Surface Temperature in a Global Hybrid Coordinate Ocean Model
Yueliang CHEN, Changxiang YAN, Jiang ZHU
2018, 35(10): 1291-1304. doi: 10.1007/s00376-018-7284-6
The Hybrid Coordinate Ocean Model (HYCOM) uses different vertical coordinate choices in different regions. In HYCOM, the prognostic variables include not only the seawater temperature, salinity and current fields, but also the layer thickness. All prognostic variables are usually adjusted in the assimilation when multivariate data assimilation methods are used to assimilate sea surface temperature (SST). This paper investigates the effects of SST assimilation in a global HYCOM model using the Ensemble Optimal Interpolation multivariate assimilation method. Three assimilation experiments are conducted from 2006-08. In the first experiment, all model variables are adjusted during the assimilation process. In the other two experiments, the temperature alone is adjusted in the entire water column and in the mixed layer. For comparison, a control experiment without assimilation is also conducted. The three assimilation experiments yield notable SST improvements over the results of the control experiment. Additionally, the experiments in which all variables are adjusted and the temperature alone in all model layers is adjusted, produce significant negative effects on the subsurface temperature. Also, they yield negative effects on the subsurface salinity because it is associated with temperature and layer thickness. The experiment adjusting the temperature alone in the mixed layer yields positive effects and outperforms the other experiments. The heat content in the upper 300 m and 300-700 m layers further suggests that it yields the best performance among the experiments.
Investigating the Initial Errors that Cause Predictability Barriers for Indian Ocean Dipole Events Using CMIP5 Model Outputs
Rong FENG, Wansuo DUAN
2018, 35(10): 1305-1320. doi: 10.1007/s00376-018-7214-7
By analyzing the outputs of the pre-industrial control runs of four models within phase 5 of the Coupled Model Intercomparison Project, the effects of initial sea temperature errors on the predictability of Indian Ocean Dipole events were identified. The initial errors cause a significant winter predictability barrier (WPB) or summer predictability barrier (SPB). The WPB is closely related with the initial errors in the tropical Indian Ocean, where two types of WPB-related initial errors display opposite patterns and a west-east dipole. In contrast, the occurrence of the SPB is mainly caused by initial errors in the tropical Pacific Ocean, where two types of SPB-related initial errors exhibit opposite patterns, with one pole in the subsurface western Pacific Ocean and the other in the upper eastern Pacific Ocean. Both of the WPB-related initial errors grow the fastest in winter, because the coupled system is at its weakest, and finally cause a significant WPB. The SPB-related initial errors develop into a La Niña-like mode in the Pacific Ocean. The negative SST errors in the Pacific Ocean induce westerly wind anomalies in the Indian Ocean by modulating the Walker circulation in the tropical oceans. The westerly wind anomalies first cool the sea surface water in the eastern Indian Ocean. When the climatological wind direction reverses in summer, the wind anomalies in turn warm the sea surface water, finally causing a significant SPB. Therefore, in addition to the spatial patterns of the initial errors, the climatological conditions also play an important role in causing a significant predictability barrier.
Circulation Features Associated with the Record-breaking Typhoon Silence in August 2014
Jianpu BIAN, Juan FANG, Guanghua CHEN, Chengji LIU
2018, 35(10): 1321-1336. doi: 10.1007/s00376-018-7294-4
Climatologically, August is the month with the most tropical cyclone (TC) formation over the western North Pacific (WNP) during the typhoon season. In this study, the reason for abnormal TC activity during August is discussed——especially August 2014, when no TCs formed. The large-scale background of August 2014 is presented, with low-level large-scale easterly anomalies and anticyclonic anomalies dominating over the main TC genesis region, a weak monsoon trough system, and a strong WNP subtropical high (WPSH), leading to significantly reduced low-level convergence, upper-level divergence, and mid-level upward motion. These unfavorable large-scale conditions suppressed convection and cyclogenesis. In August 2014, equatorial waves were inactive within the negative phase of the Madden-Julian Oscillation (MJO), with fewer tropical disturbances. Although the low-level vorticity and convection of those disturbances were partly promoted by the convective envelopes of equatorial waves, the integral evolution of disturbances, as well as the equatorial waves, were suppressed when propagating into the negative MJO phase. Moreover, the upper-level potential vorticity (PV) streamers associated with anticyclonic Rossby wave breaking events imported extratropical cold and dry air into the tropics. The peripheral tropospheric dryness and enhanced vertical wind shear by PV streamer intrusion combined with the negative MJO phase were responsible for the absence of TC formation over the WNP in August 2014.