Advanced Search
Article Contents

New Evidences on the Climatic Causes of the Formation of the Spring Persistent Rains over Southeastern China


doi: 10.1007/s00376-009-7202-z

  • The spring persistent rains (SPR) over southeastern China (SEC) are a unique synoptic and climatic phenomenon in East Asia. A former study has found that the southwesterly flow which lies on the southeastern flank of the Tibetan Plateau (TP) is one of the deflected westerly flows of the TP, and it is suggested to be the direct climatic cause of SPR. This study found that the southwesterly flow is also highly correlated with the sensible heating of the southeastern TP in interannual variability, in addition to having a high correlation in seasonal variability. These facts suggest that the thermal forcing of the TP is another important climatic cause of SPR. Numerical sensitivity experiments further prove that the mechanical and thermal forcings of the TP are the climatic causes of the formation of the SPR. On the other hand, the Nanling Mountains and Wuyi Mountains (NWM) over southeastern China not only increase the SPR precipitation amount evidently, but also make the SPR rain belt move to the south by blocking the strong southwesterly flow.
  • [1] GAO Shanhong, LIN Hang, SHEN Biao, FU Gang, 2007: A Heavy Sea Fog Event over the Yellow Sea in March 2005: Analysis and Numerical Modeling, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 65-81.  doi: 10.1007/s00376-007-0065-2
    [2] GAO Shouting, Xiaofan LI, 2008: Impacts of Initial Conditions on Cloud-Resolving Model Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 737-747.  doi: 10.1007/s00376-008-0737-6
    [3] Wang Huijun, Zeng Qingcun, 1994: A GCM Study on the Mechanism of Seasonal Abrupt Changes, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 51-56.  doi: 10.1007/BF02656993
    [4] Yunyun LIU, Zeng-Zhen HU, Renguang WU, Xing YUAN, 2022: Causes and Predictability of the 2021 Spring Southwestern China Severe Drought, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1766-1776.  doi: 10.1007/s00376-022-1428-4
    [5] WANG Zhi, GAO Kun, 2003: Sensitivity Experiments of an Eastward-Moving Southwest Vortex to Initial Perturbations, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 638-649.  doi: 10.1007/BF02915507
    [6] He Jinhai, Li Jun, Zhu Qiangen, 1989: Sensitivity Experiments on Summer Monsoon Circulation Cell in East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 120-132.  doi: 10.1007/BF02656923
    [7] Jinlei CHEN, Yuan YUAN, Xianyu YANG, Zuoliang WANG, Shichang KANG, Jun WEN, 2023: The Characteristics and Controlling Factors of Water and Heat Exchanges over the Alpine Wetland in the East of the Qinghai–Tibet Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 201-210.  doi: 10.1007/s00376-022-1443-5
    [8] QIAN Cheng, FU Congbin, Zhaohua WU, YAN Zhongwei, 2011: The Role of Changes in the Annual Cycle in Earlier Onset of Climatic Spring in Northern China, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 284-296.  doi: 10.1007/s00376-010-9221-1
    [9] Chen Yuxiang, Ji Liren, Shen Rujin, 1985: THE NUMERICAL EXPERIMENTS ON DYNAMIC FORCING BY THE TIBETAN PLATEAU FOR VARIOUS ZONAL FLOWS, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 189-199.  doi: 10.1007/BF03179751
    [10] Jae-Jin KIM, Jong-Jin BAIK, 2005: Physical Experiments to Investigate the Effects of Street Bottom Heating and Inflow Turbulence on Urban Street-Canyon Flow, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 230-237.  doi: 10.1007/BF02918512
    [11] ZHOU Qian, DUAN Wansuo, MU Mu, FENG Rong, 2015: Influence of Positive and Negative Indian Ocean Dipoles on ENSO via the Indonesian Throughflow: Results from Sensitivity Experiments, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 783-793.  doi: 10.1007/s00376-014-4141-0
    [12] WANG Zhi, GAO Kun, 2006: Adjoint Sensitivity Experiments of a Meso- -scale Vortex in the Middle Reaches of the Yangtze River, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 267-281.  doi: 10.1007/s00376-006-0267-z
    [13] Zhao Ping, Chen Longxun, 2000: Calculation of Solar Albedo and Radiation Equilibrium over the Qinghai-Xizang Plateau and Analysis of Their Climatic Features, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 140-156.  doi: 10.1007/s00376-000-0050-5
    [14] NIU Tao, CHEN Longxun, ZHOU Zijiang, 2004: The Characteristics of Climate Change over the Tibetan Plateau in the Last 40 Years and the Detection of Climatic Jumps, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 193-203.  doi: 10.1007/BF02915705
    [15] LIAN Yi, ZHAO Bin, SHEN Baizhu, LI Shangfeng, LIU Gang, 2014: Numerical Experiments on the Impact of Spring North Pacific SSTA on NPO and Unusually Cool Summers in Northeast China, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1305-1315.  doi: 10.1007/s00376-014-3247-8
    [16] Kai Chi WONG, Senfeng LIU, Andrew G. TURNER, Reinhard K. SCHIEMANN, 2018: Different Asian Monsoon Rainfall Responses to Idealized Orography Sensitivity Experiments in the HadGEM3-GA6 and FGOALS-FAMIL Global Climate Models, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1049-1062.  doi: 10.1007/s00376-018-7269-5
    [17] ZHANG Jie, Laurent LI, ZHOU Tianjun, XIN Xiaoge, 2013: Evaluation of Spring Persistent Rainfall over East Asia in CMIP3/CMIP5 AGCM Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1587-1600.  doi: 10.1007/s00376-013-2139-7
    [18] JIANG Dabang, DING Zhongli, Helge DRANGE, GAO Yongqi, 2008: Sensitivity of East Asian Climate to the Progressive Uplift and Expansion of the Tibetan Plateau Under the Mid-Pliocene Boundary Conditions, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 709-722.  doi: 10.1007/s00376-008-0709-x
    [19] Yu ZHAO, Anmin DUAN, Guoxiong WU, 2018: Interannual Variability of Late-spring Circulation and Diabatic Heating over the Tibetan Plateau Associated with Indian Ocean Forcing, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 927-941.  doi: 10.1007/s00376-018-7217-4
    [20] Shuang YU, Jiangjiang XIA, Zhongwei YAN, Kun YANG, 2018: Changing Spring Phenology Dates in the Three-Rivers Headwater Region of the Tibetan Plateau during 1960-2013, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 116-126.  doi: 10.1007/s00376-017-6296-y

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 November 2009
Manuscript revised: 10 November 2009
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

New Evidences on the Climatic Causes of the Formation of the Spring Persistent Rains over Southeastern China

  • 1. Shanghai Typhoon Institute, China Meteorological Administration, Shanghai 200030,Shanghai Typhoon Institute, China Meteorological Administration, Shanghai 200030,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: The spring persistent rains (SPR) over southeastern China (SEC) are a unique synoptic and climatic phenomenon in East Asia. A former study has found that the southwesterly flow which lies on the southeastern flank of the Tibetan Plateau (TP) is one of the deflected westerly flows of the TP, and it is suggested to be the direct climatic cause of SPR. This study found that the southwesterly flow is also highly correlated with the sensible heating of the southeastern TP in interannual variability, in addition to having a high correlation in seasonal variability. These facts suggest that the thermal forcing of the TP is another important climatic cause of SPR. Numerical sensitivity experiments further prove that the mechanical and thermal forcings of the TP are the climatic causes of the formation of the SPR. On the other hand, the Nanling Mountains and Wuyi Mountains (NWM) over southeastern China not only increase the SPR precipitation amount evidently, but also make the SPR rain belt move to the south by blocking the strong southwesterly flow.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return